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Neural Named Entity Boundary Detection
Jing Li, Aixin Sun, and Yukun Ma

Abstract—In this paper, we focus on named entity boundary detection, which is to detect the start and end boundaries of an entity
mention in text, without predicting its type. The detected entities are input to entity linking or fine-grained typing systems for semantic
enrichment. We propose BDRYBOT, a recurrent neural network encoder-decoder framework with a pointer network to detect entity
boundaries from a given sentence. The encoder considers both character-level representations and word-level embeddings to
represent the input words. In this way, BDRYBOT does not require any hand-crafted features. Because of the pointer network, BDRYBOT

overcomes the problem of variable size output vocabulary and the issue of sparse boundary tags. We conduct two sets of experiments,
in-domain detection and cross-domain detection, on six datasets. Our results show that BDRYBOT achieves state-of-the-art
performance against five baselines. In addition, our proposed approach can be further enhanced when incorporating contextualized
language embeddings into token representations.

Index Terms—Named entity boundary detection, neural networks, pointer networks, feature engineering.
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1 INTRODUCTION

Named-entity recognition (NER) is a fundamental task in
natural language processing which aims at jointly resolving
the boundaries and type of a named entity in text. In this
paper, we ignore the entity typing and focus on the sub-task
of named entity boundary detection, which is to detect the start
and end boundaries of an entity mention in text. The sub-
task is motivated by the following three key observations:

First, fine-grained entity typing systems, such as
FIGER [1], FINET [2], AFET [3], and SANE [4], have re-
cently gained significant research interests. However, many
studies on fine-grained typing either manually label entity
boundaries or assume that entity boundaries have already
been pre-detected [2]. In addition, some studies utilize off-
the-shelf NER systems to detect named entity boundaries.
For example, AFET [3] uses DBpedia Spotlight3 to identify
named entities. FINET [2] uses Stanford CoreNLP to identify
entities and then makes fine-grained type predictions. How-
ever, off-the-shelf systems are not specifically designed for
entity boundary detection. As a consequence, errors made in
entity boundary detection inevitably mislead and adversely
affect subsequent entity-typing systems. This has created
an overwhelming demand for more accurate and robust
boundary detection approaches.

Second, the availability of knowledge bases e.g.,
Wikipedia, FreeBase, ProBase, enables the study of entity
linking, which is to determine the identity of entities men-
tioned in text. Because of the overwhelming entity types
defined in knowledge bases, coarse types defined in tradi-
tional NER systems become less necessary. Further, there
could be conflicts between the types predicted by NER and
the types of the entities disambiguated through the entity
linking process.
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Third, boundary detection can be framed as a sequence
labeling problem, where the task is to predict a sequence
of ‘yes/no’ boundary tags at word level in a sentence.
Recent neural sequence labeling approaches widely fall
into two categories: recurrent neural networks with condi-
tional random fields output layer (RNN-CRF) and recurrent
neural networks with recurrent neural networks (RNN-
RNN)1. However, RNN-CRF suffers from the issue of sparse
boundary tags, because entity tokens are rare and non-entity
tokens are common in a typical sentence [5]. On the other
hand, although RNN-RNN [6] can handle input/output
sequences of varying lengths, the output vocabulary (from
which the output sequence is drawn) on the top of decoder
RNN is fixed. Consequently, different models need to be
trained with respect to different output vocabularies.

To alleviate the above issues, we propose BDRYBOT,
a neural model for entity boundary detection. BDRYBOT
adopts a sequence to sequence model with RNN networks
and the pointer mechanism [7]. Specifically, to encode a
sentence, the model employs a bidirectional RNN to model
sequential dependencies. Each word in the given sentence
is represented by both its word-level embeddings and
character-level representations learned by a sliding convo-
lutional neural network. The decoder is an unidirectional
RNN, and the entity boundaries are inferred by using the
pointer mechanism. In this way, BDRYBOT effectively han-
dles variable sized vocabulary in the output to produce
entity boundaries based on input sequence. In summary, we
make three contributions:

• We propose BDRYBOT, an end-to-end model for
entity boundary detection. BDRYBOT learns infor-
mative features automatically while alleviating the
problem of tag sparsity in output sequence and the
problem of variable size output vocabulary.

• We conduct both in-domain and cross-domain eval-
uations on six datasets. Our results show that BDRY-
BOT achieves state-of-the-art results against five

1. One RNN to encode and one RNN as a language model to generate
the output sequence.
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baselines and can be further augmented by recent
pre-trained language models.

• We make BDRYBOT available online2 (trained on
CoNLL2003) and provide users with Application
Programming Interface (API).

2 RELATED WORK

Named Entity Recognition. There are three common
paradigms for NER [8]: knowledge-based unsupervised, feature-
based supervised and neural-based systems. Knowledge-based
unsupervised systems rely on lexical knowledge, such as
domain-specific gazetteers and shallow syntactic knowl-
edge. These systems work very well only when there is ex-
haustive lexicon. Feature-based supervised systems cast NER
as a multi-class classification or sequence labeling task.
Feature engineering is a critical step in these systems.

Because neural-based systems have the advantage of
inferring latent features and learning sequence labels in an
end-to-end fashion, many neural architectures have been
widely applied in NER. Collobert et al. [9] first adopted
neural models in NER, where an architecture based on
temporal convolutional neural networks (CNNs) over a
word sequence was proposed. Since then, there has been
a growing body of work on neural-based NER. Existing
neural-based systems can be unified into a framework with
three components: an input representation, context encoder
and tag decoder. Commonly used input representations
include word-level and character-level representations [10].
Widely used context encoder architectures include CNNs
[9], recurrent neural networks (RNNs) [11], recursive neural
networks [12] and deep transformers [13]. At the top of the
context encoder, a CRF layer [11], a pointer network [14],
or an RNN layer [6] is employed to make sequence label
predictions.

Named Entity Typing. Named entity typing is the task
for assigning types or labels such as organization, location
to the detected entity mentions in a document. Existing
studies can be categorized into coarse-grained typing and
fine-grained typing. Coarse-grained typing focuses on a small
set of coarse types, such as person, location, organization and
misc. Fine-grained typing focuses on a much larger set of
fine-grained types organized in a tree-structured hierarchy.
Lin et al. [15] proposed a fine-grained system, which prop-
agates over 1,000 types from linked Wikipedia entities to
unlinkable entities. Context-aware systems (e.g., FINET [2]
and SANE [4]), embedding-based systems (e.g., FIGER [1],
AFET [3]), and partial-label system (e.g., PLE [16]), are re-
cently been developed to address fine-grained entity typing.

Named entity typing systems assume that named enti-
ties have already been detected in documents. In our task,
the output of entity boundary detection therefore provides
input to named entity typing systems. The detected men-
tions can also be input to entity linking systems.

3 NAMED ENTITY BOUNDARY DETECTION

Figure 1(a) shows the model architecture of BDRYBOT.
Given a sentence, we represent each word with a distributed

2. http://138.197.118.157:8000/bdrybot/

representation based on its character-level and word-level
embeddings. Then we use a bidirectional recurrent neural
network to capture syntactic and lexical information in the
sentence. Finally, we use a pointer mechanism to infer entity
boundaries based on the hidden states of decoder.

3.1 Input Representation Phase

The input representation in our model consists of character-
level representation and word-level representation. Previ-
ous studies [11], [17] have shown that character-level in-
formation (e.g., prefix and suffix of a word) is an effective
resource for NER task. Two kinds of network structures
have been used to extract character-level representation, i.e.,
CNN and BiLSTM. In our model, we use CNN because of
its lower computational cost. Our design is similar to [17],
and the main difference is that we use a sliding convolution
layer (i.e., variable window size of convolution filters) to
capture character n-grams in a word, shown in Figure 1(b).

Given an input sentence W = (w1, w2, . . . , wN ) of
length N . Let wn denote its n-th word. The character-level
representation and word-level embedding (e.g., pretrained
embedding) for wn are concatenated as its final representa-
tion, xn ∈ RK , where K represents dimension of xn.

3.2 Encoding Phase

We encode the input sequence X = (x1,x2, . . . ,xN ) using
a RNN. With hidden cells like long short-term memory
(LSTM) and gated recurrent unit (GRU), RNN captures long
distance dependencies without running into the problems
of gradient vanishing or explosion. We use GRU which
is computationally cheaper than LSTM. Specifically, GRU
activations at time step n are computed as follows:

zn = σ(Uzxn +Rzhn−1 + bz) (1)
rn = σ(Urxn +Rrhn−1 + br) (2)
nn = tanh(Uhxn +Rh(rn ⊙ hn−1) + bh) (3)
hn = zn ⊙ hn−1 + (1− zn)⊙ yn (4)

where σ() is sigmoid function, tanh() is the hyperbolic
tangent function, ⊙ is element-wise multiplication, zn is the
update gate vector, rn is the reset gate vector, nn is the new
gate vector, and hn is the hidden state at time step n. U , R,
b are the parameters of the encoder that need to learn.

We use a bi-directional GRU (BiGRU) network to memo-
rize past and future information in the input sequence. Each
hidden state of BiGRU is formalized as:

hn =
−→
h n ⊕

←−
h n (5)

where ⊕ indicates concatenation operation,
−→
h n and

←−
h n are

hidden states of the forward (left-to-right) and backward
(right-to-left) GRUs, respectively. Assuming the size of the
GRU is H , the encoder yields hidden states in h ∈ RN×2H .

3.3 Decoding Phase

Because the number of boundaries in output vary with
the given input, it is natural to use RNN-based models to
decode the output. At each step, the decoder takes a word
wn from the input sequence as input, and transforms it to its
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(a) The architecture of BDRYBOT.
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(b) Representation of an input word “Jordan”.

Fig. 1. Model architecture with input sentence: “Michael Jeffrey Jordan was born in Brooklyn, New York.”

distributed representation xn by looking up the correspond-
ing embedding matrix. It then passes xn through a GRU-
based unidirectional hidden layer. The decoder hidden state
at time step m is computed by:

dm = GRU(xm,θ) (6)

where θ are the parameters in the hidden layer of the
decoder, which have the same form as defined in Equations
(1) – (4). Note that, not every word from the input sentence
needs pass to decoder. Shown in Figure 1(a), “Jordan” is
the end boundary of mention “Michael Jeffrey Jordan”, so
the two words “Jeffrey” and “Jordan” will not be passed to
decoder. Suppose there are M time steps in decoder, the
decoder produces hidden states in d ∈ RM×2H with 2H
being the dimensions of the hidden layer of decoder. Again,
the encoder is bidirectional (hidden size H), and the decoder
is unidirectional (hidden size 2H).

3.4 Pointing Phase

In the pointing phase, BDRYBOT detects entity boundaries
only if the current input is a start boundary. Otherwise,
it will switch decoder status to inactive and no boundary
will be detected. Consider the input shown in Figure 1(a).
Decoder starts with input w1, i.e., Michael, which is a start
of an entity mention in this example. Thus, BDRYBOT com-
putes an output distribution over all positions (w1 to w11)
in the input sentence. w3 (Jordan) is identified as the end
boundary of w1 (Michael). Then, w4 is taken as the input,
the status of decoder switches to inactive because “was” is
not a start boundary of any entity mention. Observe that,
unlike traditional seq2seq models (e.g., the ones used in
neural machine translation), where the output vocabulary is
fixed, the number of possible positions in the input sequence
changes at each decoding step in BDRYBOT.

In order to achieve this mechanism as described above,
we pad the hidden states of encoder with a sentinel word
representing inactive. That is, the decoder should point this
sentinel word once the current input is not a start boundary
of an entity. We also extend pointer network [7] with a
direction-aware mechanism. Recall that h ∈ RN×2H and
d ∈ RM×H are the hidden states in encoder and decoder,
respectively. We first pad h with a sentinel vector as follows:

h = [h; 0] (7)

where h ∈ R(N+1)×2H . Then, we use an attention mecha-
nism to compute the distribution of end boundary over all
possible positions in the input sequence at decoding step m:

um
j = vT tanh(G1hj +G2dm), for j ∈ (m, . . . ,M) (8)

p(ym|xm) = softmax(um) (9)

Here, v, G1 and G2 are learnable parameters, j ∈ [m,M ]
indicates a possible position in the input sequence, and
softmax normalized um

j indicating the probability that word
wj is an end boundary, given the start boundary wm. When
wm is not a start boundary of any entity, the pointer is
trained to point to the padded word wN+1, i.e., inactive. For
example, BDRYBOT points to “inactive” when given “was” as
the decoder input in Figure 1(a).

3.5 Model Training
We use “teacher forcing” to train our model by supplying
the ground-truth start units to the decoder RNN [18]. This
mechanism forces the RNNs to stay close to the ground-
truth start units and entity boundaries. The loss function L
is the negative log likelihood of boundary distribution over
the whole training set D:

L(ω) =
∑
D

M∑
m=1

− log p(ym|xm;ω) +
λ

2
||ω||22 (10)

where ω are the trainable parameters of the model, and λ is
the strength of L2 regularization.

When using the RNN decoder for prediction on test
instance, the ground-truth boundaries are not available.
Similar to traditional seq2seq decoders, we feed the input
symbols based on the decoded symbol from the previous
step, e.g., we feed “was” after predicting a boundary at
“Jordan” in Figure 1(a).

4 EXPERIMENTS

4.1 Experimental Setup

Datasets. We use five popular benchmark datasets and one
dataset annotated by ourselves (i.e., Yahoo!), to ascertain the
effectiveness of our proposed approach. Because our task is
boundary detection, we ignore entity types in all datasets.

• CoNLL2003 - The CoNLL2003 NER Shared Task
dataset is a collection of Reuters newswire articles
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TABLE 1
Statistics of datasets.

Dataset # Sentences #MentionsTrain Dev Test
CoNLL2003 14,987 3,466 3,684 34,841
OntoNotes5.0 59,917 8,528 8,262 71,031
WikiGold 144,342 - 1,696 298,961
WNUT2017 3,394 1,009 1,287 3,890
BBN 32,739 - 6,338 79,730
Yahoo! - - 500 981

that contains a large portion of sports news [19]. It is
annotated with four entity types.

• OntoNotes5.0 - This dataset includes text from five
different text genres: newswire, magazine, broadcast
news, broadcast conversation, web data [20]. It is
annotated with 18 entity types.

• WikiGold - It is a set of Wikipedia articles manually
annotated with CoNLL2003 entity types [21]. The
articles were randomly selected from a 2008 English
dump and cover a number of topics.

• WNUT2017 - It is a set of noisy user-generated text
including Twitter, Reddit, YouTube comments, and
StackExchange posts [22]. The aim of this dataset is
to identify unusual, previously-unseen entities in the
context of emerging discussions.

• BBN - This dataset consists of articles from Wall
Street Journal [3]. The test dataset is manually an-
notated using 93 types. However, the training set is
automatically annotated by DBpedia Spotlight3.

• Yahoo! - This dataset consists of 500 sentences col-
lected from Yahoo! News comments. It is manually
annotated with CoNLL2003 entity types.

For CoNLL2003, OntoNotes5.0, and WNUT2017, we fol-
low the standard data splits. For WikiGold, we randomly
sampled 10% of the training set to form a development set,
on which we tune model parameters. Both BBN and Yahoo!
datasets are used only for cross-domain evaluation. That is,
we do not train our models on these two datasets, because
BNN training set is noisy and Yahoo! dataset is very small.
The statistics of datasets are reported in Table 1.

Metrics. We measure Precision (P ), Recall (R), and F-score
(F1) to evaluate entity boundary detection accuracy. Pre-
cision is the percentage of entities detected by the model
that are correct. Recall is the percentage of entities in the
dataset that should be detected by the model. A named
entity is correctly detected only if it is an exact match of the
corresponding entity in the ground-truth (ignoring entity
type). Let g be the total number of annotated entities in
ground-truth, h be the total number of entities detected by
a model, and c be the total number of correctly detected
entities by the model. Then P = c

h , R = c
g , and F1 = 2c

g+h .

Baselines. We evaluate the proposed BDRYBOT against fol-
lowing competitors3.

• RegEx - This rule-based model is created with regu-
lar expressions, based on word surface patterns, e.g.,
letter case.

3. Both our approach and all competitors utilize the BIOES tag
schema. BIOES stands for Begin, Inside, Outside, End, Single.

• Shallow-CRF - This model trains a CRF using the
commonly used token-level features [23]. All features
can be easily extracted without complicated compu-
tation.

• StanfordNER - This CRF model is the Stanford
Named Entity Recognizer version 3.9.14.

• BiLSTM-CRF - This model [17] utilizes BiLSTM to
encode word sequence, and CRF to infer decoder
tags. Both BiLSTM-CRF and BDRYBOT use the input
representation illustrated in Figure 1(b).

• BiLSTM-Softmax - This model uses the Multi-
Layered Perceptron and Softmax layers to infer de-
coder tags instead of CRF as in BiLSTM-CRF.

• Pre-trained Language Models - These models pre-
train language models on large corpora. We build up
a softmax layer on the top of ELMo [10] or BERT [13].
ELMo-FineTune and BERT-FineTune are both fine-
tuned on training datasets and finally evaluated on
test datasets. Meanwhile, we also consider the BERT
embedding as a part of token representation in our
approach and BERT is fine-tuned during training.

Implementation Details. For all neural models, we use
GloVe 300-dimensional embeddings released by Stanford5,
which are fine-tuned during training. We first use a grid
search strategy to tune hyper-parameters on CoNLL2003
and then fine-tune the parameters on other datasets.

The dimension of character-level representation is 100
and the CNN sliding windows of filters are [2, 3, 4, 5]. The
total number of CNN filters is 100. The bidirectional encoder
GRU each has depth of 3 and hidden size 200. Each decode
GRU has depth of 3 and hidden size 400. Noted that the
encoder GRU is bidirectional and decoder GRU is unidirec-
tional in our model. Thus, the decoder is twice the hidden
size of encoder. The Adam optimizer was adopted with a
learning rate 0.001 selected from {0.01, 0.001, 0.0001}. We use
a dropout of 0.5 after the convolution or recurrent layers.
The decay rate is 0.09 and the gradient clip is 5.0. For neural
baselines, we use exactly the same hyper-parameters grid
and training procedure as our proposed model above. We
report the results based on the best performance on the de-
velopment set. All neural network models are implemented
with PyTorch framework and evaluated on NVIDIA Tesla
P100 GPUs.

4.2 In-domain Evaluation

Table 2 reports the results of all models on CoNLL2003,
OntoNotes5.0, WikiGold, and WNUT2017. From the results,
we make the following observations:

First, our BDRYBOT model outperforms all baselines in
terms of R and F1 on all datasets. In terms of F1 score,
BDRYBOT is better than the strong baseline BiLSTM-CRF on
CoNLL2003 (improv. 0.85%), OntoNotes5.0 (improv. 1.74%),
WikiGold (improv. 1.50%) and WNUT2017 (improv. 1.88%).
We attribute this to the fact that BDRYBOT can effectively
capture the dependencies of input sentence when the entity
boundaries are sparse. Our solution also provides a new

4. https://nlp.stanford.edu/software/CRF-NER.html
5. http://nlp.stanford.edu/projects/glove/
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TABLE 2
Boundary detection accuracy on four benchmark datasets. Best results are in bold and significant improvements of F1 over the underlined neural

methods (BiLSTM-Softmax and BiLSTM-CRF) are marked with * ( p-value < 0.05).

Method CoNLL2003 OntoNotes5.0 WikiGold WNUT2017
P R F1 P R F1 P R F1 P R F1

RegEx 0.662 0.880 0.756 0.502 0.675 0.576 0.576 0.719 0.640 0.273 0.557 0.366
Shallow-CRF 0.934 0.904 0.919 0.907 0.858 0.882 0.837 0.828 0.833 0.722 0.120 0.206
StanfordNER 0.939 0.928 0.933 0.780 0.776 0.778 0.831 0.806 0.818 0.523 0.455 0.486

BiLSTM-Softmax 0.943 0.955 0.949 0.911 0.927 0.919 0.849 0.875 0.862 0.563 0.583 0.573
BiLSTM-CRF 0.946 0.956 0.951 0.916 0.928 0.922 0.848 0.891 0.869 0.541 0.637 0.585

BDRYBOT (ours) 0.956 0.962 0.959* 0.933 0.943 0.938* 0.853 0.913 0.882* 0.553 0.647 0.596*
ELMo-FineTune 0.958 0.972 0.965 0.938 0.954 0.946 0.903 0.921 0.912 0.597 0.653 0.624
BERT-FineTune 0.973 0.965 0.969 0.963 0.941 0.952 0.922 0.914 0.918 0.620 0.642 0.631

BDRYBOT +BERT 0.979 0.969 0.974 0.960 0.956 0.958 0.931 0.915 0.923 0.624 0.692 0.656

TABLE 3
Cross-domain evaluation results. ⋆ denotes that the model does not require training, is directly evaluated on test sets. Best results are in bold and

significant improvements of F1 over the underlined neural methods (BiLSTM-Softmax and BiLSTM-CRF) are marked with * ( p-value < 0.05).

Method BBN (CoNLL2003) Yahoo! (CoNLL2003) BBN (OntoNotes5.0) Yahoo! (OntoNotes5.0)
P R F1 P R F1 P R F1 P R F1

RegEx⋆ 0.475 0.658 0.552 0.432 0.641 0.516 0.475 0.658 0.552 0.432 0.641 0.516
Shallow-CRF 0.622 0.696 0.657 0.668 0.701 0.684 0.678 0.742 0.708 0.748 0.579 0.653

StanfordNER⋆ 0.706 0.819 0.758 0.737 0.717 0.727 0.706 0.819 0.758 0.737 0.717 0.727
BiLSTM-Softmax 0.717 0.857 0.781 0.667 0.804 0.729 0.722 0.839 0.776 0.701 0.775 0.736

BiLSTM-CRF 0.722 0.865 0.787 0.666 0.817 0.734 0.726 0.845 0.781 0.705 0.783 0.742
BDRYBOT (ours) 0.727 0.874 0.794* 0.684 0.821 0.746* 0.731 0.864 0.792* 0.720 0.789 0.753*
ELMo-FineTune 0.746 0.891 0.812 0.698 0.838 0.762 0.767 0.883 0.821 0.734 0.814 0.772
BERT-FineTune 0.769 0.904 0.831 0.719 0.827 0.769 0.788 0.897 0.839 0.767 0.831 0.781

BDRYBOT +BERT 0.785 0.912 0.844 0.714 0.845 0.774 0.796 0.912 0.850 0.752 0.839 0.793

perspective to model sequence labeling task using pointer
network, instead of the classic CRF-based approach.

Additionally, BDRYBOT has balanced precision and recall
on CoNLL2003 and OntoNotes5.0. The recall is much higher
than precision on WikiGold and WNUT2017. For Shallow-
CRF and StanfordNER, precision is higher than recall on all
datasets. Although Shallow-CRF achieves the best precision
on WNUT2017, its recall is very low. We observe all models
have low F1 scores on WNUT2017, because the dataset is
collected for detecting emerging and rare entities from user-
generated text. This is a challenging task and the best F1
of NER task on this dataset is 0.4186. Without considering
entity typing, our model achieves F1 of 0.596.

Finally, compared to static word embeddings (i.e.,
GloVe), fine-tuning pre-trained contextualized language
models can significantly improve the performance. This is
because these pre-trained models are commonly trained on
large-scale corpora and the model parameters have stored
vast amount of linguistic knowledge. The experimental
results show that our approach can be further augmented
when incorporating contextualize language models.

4.3 Cross-Domain Evaluation
We conduct a cross-domain evaluation of all models on
two test sets (BBN and Yahoo!). Table 3 reports the re-
sults obtained by training the models on CoNLL2003 and
OntoNotes5.0, and testing on BBN and Yahoo!. The models
differ in their ability to adapt to new datasets. BDRYBOT out-
performs all baselines on BBN and Yahoo in terms of R and
F1. When trained on either CoNLL2003 or OntoNotes5.0,
BDRYBOT achieves comparable performance on BBN test
set. On Yahoo! test set, BDRYBOT trained on OntoNotes5.0
is slightly better than the version trained on CoNLL2003.

6. https://noisy-text.github.io/2017/emerging-rare-entities.html

As expected, the performance on cross-domain test sets
is much worse than that on in-domain test sets. For example,
when trained on CoNLL2003, BDRYBOT delivers F1 score of
0.959 on CoNLL2003 test set, and only 0.794 on BBN test set.
The drop may be attributed to two reasons. One is that cross-
domain test sets have different name entity distributions
from training set. The other is that neural-inferring features
from training set cannot be effectively transferred to cross-
domain test set without any domain-adaptation. There is a
possibility to improve the cross-domain performance with
adversarial domain-adaptation techniques.

4.4 Qualitative Analysis
We show some example sentences from CoNLL2003 test set
in Table 4. From positive examples, we observe that BDRY-
BOT successfully detects multiple-word entities like “Bill
Jordan”, “International Confederation of Free Trade Unions”,
“Svetlana Gladishiva” and “World Cup Super G”. The negative
examples suggest that our model could be misled by capital-
ization, like the wrongly detection of “Group A” in sentence
N1. In sentence N2, the annotated ground-truth is “SKIING-
WORLD CUP”, while BDRYBOT considers “FREESTYLE”
as a part of the entity. In the third negative example, our
approach detects “Sheffield” instead of “Sheffield Wednesday”.
Note that, our model is not trained to detect time expres-
sions, therefore the time entities “Friday” and “Saturday” are
not detected in the sentence.

For better understanding, we visualize pointer attention
weights of the first positive example in Figure 2. The words
in y-axis are the input of GRU decoder. The words in x-axis
are the input of GRU encoder. For example, for a given input
“International”, BDRYBOT detects the end boundary of this
entity at the position “Unions”. For a given input “is”, BDRY-
BOT determines that it is not a start of an entity mention
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TABLE 4
Positive and negative examples for named entity boundary detection by BDRYBOT.

Positive Examples:
P1. Bill Jordan is the general secretary of the International Confederation of Free Trade Unions.
P2. Relations between Clarke , Major good - spokesman.
P3. Svetlana Gladishiva of Russia won the women’s World Cup Super G race on Saturday.

Negative Examples: Ground-truth
N1. Hosts UAE play Kuwait and South Korea take on Indonesia on Saturday in Group A matches. Group A is not an entity
N2. FREESTYLE SKIING-WORLD CUP MOGUL RESULTS. SKIING-WORLD CUP
N3. Dutch forward Reggie Blinker had his indefinite suspension lifted by FIFA on Friday and was set to

make his Sheffield Wednesday comeback against Liverpool on Saturday.
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Fig. 2. Visualization of pointer attention weights for sentence “Bill Jor-
dan is the general secretary of the International Confederation of
Free Trade Unions.”. Our model successfully detects the end bound-
aries at the positions: Jordan and Unions. The interactive visualization
is available online http://138.197.118.157:8000/bdrybotapi/

by the sentinel word “Inactive”. Observe that the identified
boundaries have dominant attention weights, which implies
that BDRYBOT can successfully learn sentence features for
entity boundary detection.

5 CONCLUSION

In this paper, we propose BDRYBOT, an end-to-end neural
model to detect entity boundaries from text. Because our
model utilize a pointer network, it effectively addresses the
issue of boundary tag sparsity. More importantly, compared
with existing encoder-decoder models, BDRYBOT has the
key advantage of inherently handling variable size output
vocabulary. Through two sets of experiments, on in-domain
detection and cross-domain detection, we demonstrate the
effectiveness of BDRYBOT against state-of-the-art solutions
on different datasets.

We consider two potential directions for future works.
First, cross-domain adaptation remains challenging based
on our experimental findings. Leveraging adversarial trans-
fer learning and meta-learning to improve cross-domain
adaptation is a very interesting direction. Second, improving
text understanding and enhancing language representations
using entity-level information is also a potential direction.
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