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Leveraging Official Content and Social Context
to Recommend Software Documentation
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Abstract—For an unfamiliar Application Programming Interface (API), software developers often access the official documentation to
learn its usage, and post questions related to this API on social question and answering (Q&A) sites to seek solutions. The official
software documentation often captures the information about functionality and parameters, but lacks detailed descriptions in different
usage scenarios. On the contrary, the discussions about APIs on social Q&A sites provide enriching usages. Moreover, existing code
search engines and information retrieval systems cannot effectively return relevant software documentation when the issued query
does not contain code snippets or API-like terms. In this paper, we present CnCxL2R, a software documentation recommendation
strategy incorporating the content of official documentation and the social context on Q&A into a learning-to-rank schema. In the
proposed strategy, the content, local context and global context of documentation are considered to select candidate documents. Then
four types of features are extracted to learn a ranking model. We conduct a large-scale automatic evaluation on Java documentation
recommendation. The results show that CnCxL2R achieves state-of-the-art performance over the eight baseline models. We also
compare the CnCxL2R with Google search. The results show that CnCxL2R can recommend more relevant software
documentation, and can effectively capture the semantic between the high-level intent in developers’ queries and the low-level
implementation in software documentation.

Index Terms—Software documentation, recommendation systems, question and answering sites, ranking model
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1 INTRODUCTION

W Ith the emergence of Web 2.0 in modern software
development, nowadays the behavior of developers

is changed in relation to how they look for knowledge to
fulfill their information needs [1], [2], as there are large
number of accessible official software documentation (e.g.,
Application Programming Interface (API) documentation1,
language tutorials2, and language specification3) and social
media resources (e.g., question and answering sites, personal
blogs and technique forums). The official resources provide
important information about functionality, structure and
parameters for APIs [3], [4]. The social resources provide
enriching context in which the developers learn, preserve
and share knowledge about software development and
maintenance [5]–[7].

Official documentation is an important resource for de-
velopers to learn appropriate ways to use an unfamiliar
API [8], [9]. Some studies had investigated API learning
obstacles and found that there is a mismatch between the
needs of consumers and the knowledge provided in soft-
ware documentation [8], [10]. Robillard et al. [8] found that
boilerplate member-level documentation will often not answer the
query, and waste developer’s time. Treude et al. [11] developed
a technique to extract development tasks to navigate official
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documentation because of the frustration of documentation
structure, format and presentation. In addition, many recent
studies [9], [12], [13] have targeted the recovery of trace-
ability links between API and its learning resources. Most
of existing works recover the traceability via a specific pair,
such as <API, section fragment> pair [13], [14] and <API,
keyword> pair [15]. These approaches often take advantage
of the content and the context in software documentation
but not the advantage of the context in social resources [10],
[11]. On the contrary, recent work [15] only takes into
account social resources but not the content of software
documentation. Developers often issue queries using nat-
ural language [15], [16]. However, these approaches mainly
accept API-like terms as input query and do not provide
any support for natural language query [4], [17], [18]. Thus,
the responses generated by them are very low quality.

Some studies [5], [6], [19] show that the developers
always benefit from social media such as online question
and answering sites when they encountered programming
problems. One of the most popular social media for this
purpose is Stack Overflow 4, which is an important question
and answering venue for developers sharing knowledge on
software development. Treude et al. [10] proposed a tech-
nique to extract insight sentences from Stack Overflow for
augmenting API documentation, but do not support natural
language query. Campos et al. [20] used the Stack Overflow
data to recommend question-answer pairs as the solutions
for API usage tasks instead of recommending software doc-
umentation. Although the Stack Overflow allows users to
query in natural language, the users must need to manually
check the tedious results to obtain the desired discussion

4. https://stackoverflow.com/
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Fig. 1. A question and corresponding best answer from Stack Overflow.

threads. For example, the search engine returns 4225 pages
with respect to the query “sort array in Java” 5. Even worse,
the software documentation related to the query is buried
within the returned discussion threads.

When developers search software documentation in nat-
ural language, there is a mismatch between the high-level
intent in developers’ queries and the low-level implementa-
tion in software documentation [8]. Moreover, a developer
may want to complete a programming task with an unfamil-
iar API, and he may issue a query that does not contain any
words found in the desired software documentation. The
traditional information retrieval systems which consider
only the textual similarity as the search criterion, cannot re-
turn the desired software documentation because the cosine
similarity is equal to 0 in the tf -idf vector space. For exam-
ple, consider the query “reinitialise transient variable”, there
is no Java API documentation which contains all the three
keywords of this query. Thus, we cannot obtain even a single
relevant API documentation in Java documentation corpus
by this query using traditional retrieval systems. Likewise,
the state-of-the-art API usage miner [16] cannot return any
relevant API sequence based on the code corpus of Github,
but gives prompt of “Note: your query may not be supported
by Java SDK library”6. However, a developer has imple-
mented the task using the class java.io.Serializable
and methd readObject on Stack Overflow7 as shown
in Fig. 1. Therefore, considering the context of APIs on
social platforms seems to be more appropriate in a software
documentation recommendation strategy.

In this paper, we present CnCxL2R, a recommendation
strategy that incorporates the content of software docu-
mentation and social context on Stack Overflow into a
learning-to-rank schema. Given a natural language query,
CnCxL2R recommends software documentation through
two key steps: candidate software documentation selection
and recommendation by learning to rank. First, to bridge
the lexical gap between query and documentation, CnCxL2R
generates candidate software documents based on not only
official content but also social context. Second, 22 features are
extracted to measure the relevance of a software document

5. https://stackoverflow.com/search?q=sort+array+in+java
6. http://211.249.63.55/
7. http://stackoverflow.com/questions/18893032

to a query. In particular, to further bridge the lexical gap,
we utilize a neural language model [16], [21] to embed
the context of software documentation on Stack Overflow
to capture the semantical similarity between a query and
a candidate software document. Finally, a ranking model
is trained by a learning-to-rank manner to recommend
top-k software documents. To evaluate the performance
of CnCxL2R, we conducted a large-scale automatic evalu-
ation using the real discussions on Stack Overflow. We also
conducted a user study to compare the recommendation
performance with Google search. In short, we make the
following contributions:

• We propose CnCxL2R, a novel software recommen-
dation strategy incorporating the official content of
documentation and social context on Stack Overflow
into a learning-to-rank schema. It can perform well
with natural language queries comparing with tradi-
tional code search.

• We investigate four types of features, i.e., statistical-
based, textual, context and popularity features, for
learning the software documentation ranker. All the
four types of features are easy to derive and enable
real-time recommendation.

• We conduct a large-scale automatic evaluation to
evaluate the performance of CnCxL2R and investi-
gate the effects of different feature groups and em-
bedding parameters. CnCxL2R achieves the state-of-
the-art results against 8 baseline methods.

• We conduct a user study to compare the recom-
mended results by CnCxL2R with Google search. Re-
sults show that CnCxL2R significantly outperforms
Google search in software documentation retrieval
task.

The remainder of this paper is organized as follows.
In Section 2, we describe the details of CnCxL2R. In Sec-
tion 3, we explain the design of experiments. In Section 4,
we present the results. Section 5 discusses the threats to
validity. After summarizing the related work in Section 6,
we conclude the paper in Section 7.

2 METHODOLOGY

In this section, we present our approach in details. We first
introduce the overall architecture. Then we describe the
approach to selecting candidate software documentation. Fi-
nally, we present our learning-to-rank approach for software
documentation recommendation.

2.1 Overview

Fig. 2 shows the architecture of CnCxL2R, which consists of
two core phases: candidate software documentation selec-
tion and recommendation by learning-to-rank model.

Our idea is based on the consideration that social con-
text can provide complementary information for official
software documentation. In the phase of candidate docu-
mentation selection, we take into account three factors: the
content of a software document, local and global context
of a software document. This process recommends possible
software documents for the programming task in a query.
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Fig. 2. The architecture of CnCxL2R.

In the phase of recommendation, we train a ranking
model using four types of features, i.e., statistical-based,
textual, context and popularity features. The selected candi-
date software documents in the first phase are ranked using
the trained model. The input of our approach is a natural
language query about programming task and the output is
a ranked list of official software documentation. Training
the ranking model is an off-line process, while ranking the
candidate software documentation is a run-time process that
starts when a query is issued by a developer.

2.2 Candidate Software Documentation Selection
Given a query, candidate software documentation selec-

tion is a process of selecting a subset of documents related
to the programming task in the query. In this paper, soft-
ware documentation refers to API documentation, language
tutorial and language specification. API documentation con-
tains all the information about the functions, classes, return
types, arguments and so on. Language tutorials are practical
guides for programmers who want to use a programming
language to create applications. Language tutorials include
hundreds of complete, working examples, and dozens of
lessons. Language specification is the definitive technical
reference including the semantics of all types, statements,
and expressions, as well as threads and binary compatibility.
We consider the following three approaches to select the
candidate software documents.
2.2.1 Selection by Content
For a query, the content of documentation reflects the sur-
face relevance between the query and software documenta-
tion. To retrieve software documents for a query, we need to
crawl the content of a corpus of software documentation. We
crawl all documents in our corpus (detailed in Section 3.1)
and perform following pre-processing.

• There are some code fragments in software doc-
umentation, which commonly include class names
and method names. We retain code fragments in
content because it can provide hints for a query.

• The stopwords are general words and no meaning
if they are used alone and appear frequently in text.
Thus, we remove the English stopwords provided by
the Natural Language Toolkit [22], which contains
127 words (e.g., all, just, being,...).

• Stemming can potentially increase the discriminative
power of root words and reduce inflected words to
their word stem. We reduce a word to its root using
Porter Stemming Algorithm [23].

Given a query, we use Lucene8 engine and Latent Dirich-
let allocation (LDA) [24] model to retrieve candidate soft-
ware documentation.

Lucene engine: We index each software documentation
as an index document in Apache Lucene engine. For each
query, we retrieve the top 10 results from corpus using
Lucene with BM25 scoring function.

LDA model: We use LDA model to represent the query
and the content of software documentation as vectors in
topic space. Then we retrieve the top 10 results based on
cosine similarity of topic distributions.

2.2.2 Selection by Local Context
Software documentation is mainly written to effectively
capture the information about functionality, structure and
parameters, but lacking insights about usage scenarios and
cautions [10]. Stack Overflow is a popular question and an-
swering site where developers ask programming questions
to seek solutions. The content of discussions on Stack Over-
flow provides enriching context to mine usage scenarios and
cautions of APIs [9].
DEFINITION 1 (Discussion Thread). A discussion thread

consists of a question and all its answers. The question
and answers are referred to as posts.

When a software document appears in a discussion thread,
its surround texts provide enriching context for its usage
scenarios. Now we give the definition of concept of local
context for a software document.
DEFINITION 2 (Local Context). If a software document is

mentioned in a best answer, the texts of the question
(title and body) and the best answer are regarded as the
local context of the software document.

The definition of local context is based on the consid-
eration that the quality of best answer is better than other
answers in the discussion thread. The text of the best answer
is the immediate context when a software document appears
in a best answer. On the other hand, the question title
and question body, describing the programming problem
in detail, provide cues to reflect the relevance between the
problem and the software documentation in the best answer.

For example, the best answer9 on Stack Overflow, men-
tions two API documents: java.url.regex.Pattern
and java.util.ArrayList. This discussion thread con-
sists of a question and three associated answers. In terms
of the definition, we only consider question title, question

8. http://lucene.apache.org/
9. http://stackoverflow.com/questions/18625462
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Fig. 3. Training word embedding example with the skip-gram model.

body and the body of the best answer as local context for
the two API documents, excluding the other two answers.

We collect all local contexts for the software documents
in our corpus. Each local context of a software document
is considered as an independent document to be retrieved.
Given a query, we use Lucene engine and LDA model to
retrieve the most relevant local context and pick out the
software documents in the local context as recommendation.

Lucene engine: We index every local context as an index
document using Apache Lucene engine. For each query, we
retrieve the top 10 software documents from the returned
local contexts using Lucene with BM25 scoring function.

LDA model: Query and local context are represented
as vectors in topic space. We retrieve the top 10 software
documents from the returned local contexts based on cosine
similarity of topic distributions.

2.2.3 Selection by Global Context
A specific software document may be mentioned in multiple
discussion threads. For example, java.util.ArrayList
was mentioned 906 times. Thus, there are many local con-
texts for a specific software document.

DEFINITION 3 (Global Context). The global context of a
software document is the collection of all its local con-
texts.

For the global context, we use a neural language model
for learning term and documentation representations. The
key idea is based on Harris’ distributional hypothesis [25],
which states that words in the same context tends to have
similar meanings and similar words have similar vector
representations. Traditionally, language models represent
each term as a feature vector using one-hot representation,
where a vector element that corresponds to the observed
word is equal to 1 and 0 otherwise [26]. Recently, neu-
ral language models have been proposed to address low-
dimensional, distributed embedding of words [27], [28].
These approaches take advantage of neural language mod-
els to capture both syntactic and semantic relationships be-
tween words. Mikolov’s continuous bag-of-words and skip-
gram language models [29], [30] are powerful and efficient
approaches to learn distributed word embeddings.

Fig. 3 illustrates the training procedure with the
skip-gram model when it reaches the current word
java.util.ArrayList10. We define that wt is the only
word on the input layer. N is the hidden layer size. V is the
vocabulary size. C is the number of words in the context. x

10. http://stackoverflow.com/questions/18625462/
get-a-particular-list-of-string-using-regex-in-java/18625626\
#18625626
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Fig. 4. A 2D projection of embedding natural language words and
software documents using PCA.

is the one-hot encoded vector for wt, which means only one
out of V units will be 1 and all other units are 0. The output
of hidden layer can be written as

h = W Tx = V T
wt

(1)

where W is a V ×N input→ hidden weight matrix. Vwt is
the vector representation of the input word wt.

On the output layer, each output is computed using the
hidden→ output matrix:

p (wc,j = wO,c|wt) =
exp (uc,j)∑V
j′=1 exp (uj′)

(2)

where wt is the input word; wc,j is the j-th word on the c-th
panel of the output layer; wO,c is the actual c-th word in the
output context word. uc,j is the net input of the j-th unit on
the c-th panel of the output layer,

uc,j = V ′T
wj
· h, for c = 1, 2, ..., C (3)

where V ′T
wj

is the output vector of the j-th word in the
vocabulary, wj and V ′T

wj
is taken from a column of the

hidden→ output weight matrix, W ′.
When training the skip-gram model to predict C context

words, the loss function is written as

E = − log p (wO,1, wO,2, ..., wO,C |wt)

= − log

C∏
c=1

exp
(
uc,j∗c

)∑V
j′=1 exp (uj′)

= −
C∑

c=1

uj∗c + C · log
∑V

j′=1
exp (uj′)

(4)

where j∗c is the index of the actual c-th output context word
in the vocabulary.

We use the skip-gram to learn embeddings of natu-
ral language words and software documentation. Fig. 4
illustrates a 2-D projection of vectors of natural language
words and software documentation in our dataset using
principal component analysis (PCA). In the embedding
space, semantically close words are likewise close in the
embedding space while they are not close based on surface
similarity such as term overlapping and TF-IDF weight.
Especially, the vectors of the word and software documenta-
tion with same intent have the shortest distance. For exam-
ple, the word “arraylist” is close to the API documentation
java.util.ArrayList.

Following [31], we use bag-of-words model to average
out the vectors of the individual words in a query. Given a
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Fig. 5. Learning-to-rank architecture.

query, we retrieve top 10 software documents based on the
cosine similarity between the average vector and software
documentation vector.

2.3 Recommendation by Learning to Rank
Given a programming query, our task is to recommend a

ranked list of software documents that are most relevant
to the intent in the query. Mose specifically, we formu-
late the software documentation recommendation task as
a learning-to-rank problem.
2.3.1 Problem Formulation
For the ranking task, a successful approach is to treat it as a
supervised machine learning problem [32]. The most typical
setup is the supervised learning-to-rank schema, which is
as follows: Assume that there is a corpus of documents. In
the training process, a set of queries and retrieved lists are
provided. Each query is associated with a set of retrieved
documents with relevance judgments. In the learning-to-
rank schema, each query-document pair is represented by
a set of features. The learning-to-rank schema automatically
learns the optimal way of combining these features. A set of
such pairs is used to train a machine learning algorithm,
then a ranking function is built to rank the documents
pertaining to the query.

Fig. 5 shows the architecture of learning-to-rank process.
D = {d1, d2, ..., dn} represents the retrieved candidate soft-
ware documents for a query q. The candidate set comes with
their relevancy judgments, where the software documents in
the best answer are annotated as positive instances (〈q, d+〉)
and negative for otherwise (〈q, d−〉). Our goal is to build
a ranking model which facilitates optimal ranking of the
candidate list D for a query q. More formally, the task is to
learn a scoring function F (q, d):

F (q, d) =

K∑
k=1

ωi · φi (q, d) (5)

where each feature φi (q, d) measures a specific relationship
between query q and candidate software documentation d.
ωi is the weight of the i-th feature (total K features), and
is learned during the training. The optimization procedure
of learnin-to-rank tries to find the scoring function that
can rank the relevant software documents at the top of
candidate list.

There are mainly three approaches to learn scoring func-
tion, namely, pointwise [33]–[35], pairwise [36]–[38] and
listwise [39]–[41]. Pointwise approach is the most simple
way to build ranking model, which defines the loss function
based on individual documentation. The pointwise com-
monly be viewed as regression approach by minimizing

a loss function. Pairwise approach transforms the ranking
problem to pairwise classification, taking candidate docu-
mentation pairs as instances in learning instead of individ-
ual documentation. Listwise approach generates a candidate
list through the comparison between two documents. List-
wise approach takes lists as instances in learning and loss
function is defined on basis. Our approach falls within the
category of pairwise.

2.3.2 Feature Extraction
In this section, we describe the details of feature engineering
for training the ranking schema in our approach. Totally, we
extract 22 features, which fall into four groups: Statistical-
based, Textual, Context, and Popularity features as listed
in Table 1. Furthermore, we divide the 22 features into 3
categories: Q-D means that the feature is dependent on
both query and candidate document, Q represents that the
feature is calculated by query regardless of candidate docu-
ment, D means that the feature only depends on candidate
document regardless of query.

Statistical-based Features. We use 10 statistical-based fea-
tures [21], [42] in our learning-to-rank schema, which are
widely used in information retrieval community and shown
in Table 1.

We define that q represents a query, which consists of t
terms q1, q2, ..., qt. The number of occurrences of the query
term qi in document d is denoted as c(qi, d). Document fre-
quency df(qi) reflects the number of documents containing
qi in the document collection. |C| is the total number of
documents in the document collection and |d| is the length
(i.e., the number of terms) of document d. We obtain 10
features (F1-F10) based on the above definitions. Note that
F5, F6 and F7 belong to Q category, and the other 7 features
belong to Q-D category.

Textual Features. Textual features are the basic features
used to judge relevancy between a query and a software
document.

textualSim: This feature computes the textual similarity
between a query and a software document using cosine
similarity.

textualSim (Vq, Vd) = cos (Vq, Vd) =
V T
q Vd

‖Vq‖ ‖Vd‖
(6)

where Vq is a query vector and Vd is a vector of a software
document based on bag-of-words model.

textualBM25: BM25 [43] is a ranking function used by
search engines to rank matching documents according to
their relevance to a given search query. The BM25 score
between query q and a software document d is computed
as follows,

BM25 (q, d) =
∑
qi∈q

idf (qi) · c (qi, d) · (k + 1)

c (qi, d) + k1 ·
(

1− b+ b · |d|avgdl

)
· (k3 + 1) · c (qi, d)

k3 + c (qi, d)

(7)

where avgdl is the average software documentation length
in the entire document corpus. k1, k3 and b are free param-
eters. Following the benchmark of learning-to-rank system
[42], we set k1 = 2.5, k3 = 0 and b = 0.8.
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TABLE 1
Learning features.

Group Feature name Description Category

Statistical-based

F1
∑

qi∈q∩d c (qi, d) Q-D
F2

∑
qi∈q∩d log (c (qi, d) + 1) Q-D

F3
∑

qi∈q∩d
c(qi,d)

|d| Q-D

F4
∑

qi∈q∩d log
(

c(qi,d)
|d| + 1

)
Q-D

F5
∑

qi∈q∩d log
(

|C|
df(qi)

)
Q

F6
∑

qi∈q∩d log
(
log
(

|C|
df(qi)

))
Q

F7
∑

qi∈q∩d log
(

|C|
c(qi,C)

+ 1
)

Q

F8
∑

qi∈q∩d log
(

c(qi,C)
|d| · log

(
|C|

df(qi)

)
+ 1
)

Q-D

F9
∑

qi∈q∩d c (qi, d) · log
(

|C|
df(qi)

)
Q-D

F10
∑

qi∈q∩d log
(

c(qi,d)
|d| · |C|

c(qi,C)
+ 1
)

Q-D

Textual

textualSim The textual similarity between a query and a software document based on bag-of-words model. Q-D
BM25 The BM25 score between a query and a software document. Q-D
isClueInQuery Whether the clue word in the URL of a software document is contained in a query. Q-D
isHashmark Whether the URL of a software document contains a fragment identifier (hashmark #). D
docCategory One of categories (official APIs, official tutorials and official specifications). D
numSlash Number of slashes in the URL of a software document. D
lengthUrl Length of strings in the URL of a software document. D
lengthDoc Number of terms in a software document. D
lengthQuery Number of terms in a query. Q

Context contextSim The context cosine similarity between a query and a software document. Q-D

Popularity refFrequency The number of times that a software document is referenced on Stack Overflow. D
isBest It is true when a software document ever occurred in best answers. D

isClueInQuery: Whether the clue word in the URL of a
software document is contained in the query. For exam-
ple, isClueInQuery is true when the clue word “HashSet”
in the URL https://docs.oracle.com/javase/7/docs/api/ java/util/
HashSet.html is contained in the query “Understanding Hash-
Set”.

isHashmark: Whether the URL of a software document
contains a fragment identifier (hashmark #). For example,
isHashmark is true because the URL https://docs.oracle.com/
javase/8/docs/api/ java/lang/Class.html#getResourceAsStream-
java.lang.String- contains a hashmark #.

docCategory: The official software documentation con-
sists of official APIs, official language tutorials and official
language specifications. docCategory is equal to 1 when the
documentation is an official API, 2 for official tutorial, and
3 for official specification.

numSlash: Number of slashes in the URL of a software
document.

lengthUrl: Length of strings in the URL of a software
document.

lengthDoc: Number of terms in a software document.
lengthQuery: Number of terms in a query.

Context Features. After training the word2vec corpus, we
can get the vector representation of each word. Suppose
that the length (i.e., the number of terms) of a query and
a software document are N and M , respectively. In order to
get the text vector, we average the word vectors in the text.
wq and wd denote the text vector of a query and a software
document, respectively. We can get the context similarity be-
tween the query and the software documentation as follows:

contextSim (wq, wd) = cos (wq, wd) =
1

NM ·
∑
wi ·

∑
wj∥∥∥∑

wi

N

∥∥∥∥∥∥∑
wj

M

∥∥∥
(8)

Popularity Features. Much meta-data is available on Stack
Oveflow. We can extract features from these meta-data to
measure the popularity of a software document.

refFrequency: This feature measures the number of times
that a software document is referenced on Stack Overflow.

isBest: It is true when a software document was occurred
in a best answer.

2.3.3 Learning a Ranker
In our approach, we train the ranking model using one
of the state-of-the-art learning-to-rank algorithms, namely,
LambdaMART [44], a boosted tree version of Lamb-
daRank [45], that won the Yahoo! Learning to Rank Chal-
lenge.

In our approach, the input of learning-to-rank algo-
rithm is the training instances which represent each query-
documentation pair as a feature vector. di and dj denote
candidate software documentation i and j in the given
query q, respectively. Based on feature extraction in Sec-
tion 2.3.2, xi and xj are feature vector for < q, di > and
< q, dj >, respectively. LambdaMART builds a regression
tree to model the functional gradient of the cost function of
interest, and evaluate at all the training pairs [44], [46]. The
λ-gradients can be written as follows:

λij = Sij

∣∣∣∣∆NDCG∂Cij

∂σij

∣∣∣∣ (9)

where Sij ∈ {−1, 1} is equal to 1 if the documentation
di is more relevant than the documentation dj , and is
equal to -1 if the documentaion di is less relevant than
the documentation dj . ∆NDCG is the NDCG (Normalized
Discounted Cumulative Gain) gained by swapping those
two software documents. Let F (x) is the ranking function,
and σij = F (xi)−F (xj) is the difference in ranking scores
for the pair of software documents. Cij = F (xj)−F (xi) +
log
(
1 + eF (xi)−F (xj)

)
is the cross-entropy cost applied to



IEEE TRANSACTIONS ON SERVICES COMPUTING, VOL. 14, NO. 2, MARCH/APRIL 2021 478

the logistic of the difference of the scores. Each point then
sums its λ-gradients for all pairs P in which it occurs:

λi =
∑
j∈P

λij (10)

A positive lambda indicates a push toward the top rank
position and a negative lambda indicates a push toward the
lower rank positions. Finally, the ranking function F (x) can
be learned based on the λ-gradients and Newton-Raphson
line step [44].

3 EXPERIMENTAL SETUP

In this study, we performed a set of experiments with the
data from official software documentation websites and
Stack Overflow website. We now describe our experimental
setup: data collection, performance measures and compari-
son baselines.

3.1 Data Collection
There are two types of text data used in this research: the

text of software documentation and the text of discussion
threads on Stack Overflow.

Corpus for Word Embedding. In this research, we focus
on Java software documentation on its official sites and
Java discussion threads on Stack Overflow. The discus-
sion threads on Stack Overflow provide enriching insights
for software documentation by means of hyperlinks. The
official documentation mainly provides information about
functionality, structure and parameters instead of insights
and feedbacks on Stack Overflow. Usually, a query is ex-
pressed in natural language, and much closer to the dis-
cussions on Stack Overflow. Thus, we use the discussion
threads on Stack Overflow as the corpus for word embed-
ding.

For the questions and answers on Stack Overflow, their
quality significantly varies from post to post. In order to
guarantee the quality of text, we extract these discussion
threads using the datadump archive available on the Stack
Exchange website 11 that satisfy the following criteria:
• The question tags contain “Java”. This condition

filters out the local and global context about “Java”
from the sea of information.

• The score of question is larger than 0. This condition
guarantees that at least a developer has voted the
question as an “useful” question.

• The question has an answer which is accepted as the
best answer. Meanwhile, the score of the best answer
is larger than 0. This condition guarantees the quality
of the best answer.

• The best answer must contain at least one hyperlink
which links to official Java API documentation, or
official Java tutorial, or official Java specification.

Based on the above criteria, we totally collect 30, 272
discussion threads based on data dump released on Au-
gust 2015. We randomly select 24, 217 discussion threads
(account for 0.8) as training discussion threads and other

11. https://archive.org/details/stackexchange

6055 threads (account for 0.2) as test discussion threads. For
the training discussion threads, we take the following text
pre-processing:

• Select question title, question body and best answer
body as text document for embedding.

• Remove code snippets and english stop words, and
change all characters to lowercase.

• Add the actual URL address after the anchor text of
hyperlink of software documentation.

• Normalize the URLs of software documentation of
different Java versions. For example, in our vocab-
ulary, we use “api_docs/api/ java/util/ArrayList.html”
to label the three URLs (https://docs.oracle.com/
javase/7/docs/api/ java/util/ArrayList.html, https://docs.
oracle.com/javase/8/docs/api/ java/util/ArrayList.html,
and https://docs.oracle.com/javase/6/docs/api/ java/util/
ArrayList.html).

We use these 24, 217 discussion threads as training cor-
pus for word embedding. To learn word representations,
we use the skip-gram model implemented in Gensim 12.
The context window size is set to 10 and the minimal
word frequency is 5. Finally, we collect 1, 520 Java software
documents from training discussion threads.

Crawl Official Documentation. After training the word
embeddings, we get 1, 520 Java software documents and we
consider these software documents as our research corpus.
We crawl these 1, 520 software documents via the hyper-
links in discussion threads. We take the following text pre-
processing:

• Usually, a class or interface level of documentation
is very long because it contains thorough method
descriptions. For example, java.util.ArrayList
(https://docs.oracle.com/javase/8/docs/api/ java/util/
ArrayList.html) contains 31 methods in its html file.
In such cases, we only crawl the class or interface
description in the beginning of html file as the
content of the URL.

• If an URL of a software document contains a
fragment identifier (hashmark #), we crawl the
content of the section that the hashmark identi-
fies. For example, the URL of https://docs.oracle.com/
javase/8/docs/api/java/util/ArrayList.html#get-int- men-
tions the method get(int index). We only crawl
the section of get(int index) in the html file.

Dataset for Learning A Ranker. In this study, we only focus
on the corpus consisting of 1, 520 Java software documents
as the demonstration of effectiveness of CnCxL2R. We leave
the cold-start problem in the future research. Thus, we select
the discussion threads whose best answers contain at least
one software document of our corpus to learn a ranker.
Based on the above setting, we collect 12, 020 discussion
threads for training a learning-to-rank model. In the cor-
pus of test discussion threads, we collect 2, 924 discussion
threads for testing our recommendations.

For a selected discussion thread, we assume that the
question title contains sufficient information for the problem

12. https://radimrehurek.com/gensim/
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in the question. We consider the question title as the input
query of CnCxL2R. The pair <query, software documentation
in the best answer> is treated as a positive instance and an
randomly sampled pair as a negative instance.

3.2 Performance Measures

We choose four performance metrics which are widely
used for recommendation evaluation: precision at position
k, recall at position k, mean average precision (MAP) and
mean reciprocal rank (MRR) [47], [48].

Precision at position k (P@k): P@k is a metric to measure
top k positions of a ranked list using two levels of relevance
judgment (relevant and irrelevant). For a natural language
query q, let Dk be the set of top-k recommended official
documents and Dg be the set of ground-truth documents.
P@k is calculated by P@k =

|Dk∩Dg|
k .

Recall at position k (R@k):R@k is a measure for evaluating
the fraction of top-k documents that are relevant to the
query that are successfully retrieved. R@k can be defined
as follows: R@k =

|Dk∩Dg|
|Dg| .

Mean average precision (MAP ): MAP is defined as the
mean of average precision (AP) over a set of queries. Let Q
be the set of all test queries. The set of relevant documents
for qj ∈ Q is

{
d1, ..., dk, ..., dmj

}
, and Rjk is the set of

ranked results from the top results until you get to docu-

ment dk, then MAP (Q) = 1
|Q|

|Q|∑
j=1

1
mj

mj∑
k=1

Precision (Rjk).

When a relevant document is not retrieved at all, the preci-
sion value in the above equation is taken to be 0.

Mean reciprocal rank(MRR): The reciprocal rank of a
query response is the multiplicative inverse of the rank
of the first correct answer. The MRR is the average of
the reciprocal ranks of results for a sample of queries Q:

MRR (Q) = 1
|Q|

|Q|∑
j=1

1
rankj

, where rankj refers to the rank

position of the first relevant document for the j-th query.

3.3 Comparison Baselines

In order to validate the effectiveness of the proposed
approach, we evaluated 8 models in our experiments and
provided the corresponding results as baselines.
• CnBM25: This is the baseline model which selects

candidate software documents by content described
in Section 2.2.1. Note that this model indexes each
candidate with the content stated in itself and re-
trieves candidates using BM25 [43] scoring func-
tion13.

• CnLDA: This baseline is also based on the content of
software documentation in Section 2.2.1. This model
represents query and content of documentation as
vectors in topic space. In our experiments, we use
Latent Dirichlet Allocation (LDA) [24] for topic mod-
eling. In particular, we computed the perplexity [24]
of a held-out test set of training data to determine the
number of topics. The perplexity is monotonically

13. We use the BM25 implementation provided by Apache Lucene.

decreasing in the likelihood of the test data, and is
algebraicly equivalent to the inverse of the geometric
mean per-word likelihood. We choose the number of
topics (i.e., 200) with the lowest perplexity.

• CnDoc2vec: This baseline [49] is based on the
doc2vec approach proposed by Google, which con-
catenates the paragraph vector with several word
vectors from a paragraph and predicts the following
word in the given text. The document vectors are
learned from the content of software documentation.

• CxBM25: This baseline is based on the local context
of software documentation described in Section 2.2.2.
This model indexes each local context as a document
and retrieves candidates using BM25. Given a query,
this method is to retrieve the most similar context
and find out official software documents in the best
answer as the recommendation.

• CxLDA: This baseline is similar with CnLDA. The
difference is that this baseline uses the topic space of
local context for query and documentation represen-
tation. The lowest perplexity results in 300 topics for
LDA models.

• LoCxDoc2vec: This baseline is similar with Cn-
Doc2vec, but the document vectors are learned from
local contexts.

• GloCxCos: This baseline is base on the global con-
text describe in Section 2.2.3. This model represents
natural language words and software documents as
vectors in shared embedding space [29]. The cosine
similarity is used for retrieval.

• GloCxAsy: This baseline is based the global context
and an asymmetric similarity measure [50] is used
to retrieve candidates.

• CnCxL2R: This method is our proposed model which
takes into account content, local and global con-
text of software documentation in a learning-to-rank
schema as shown in Fig. 2.

4 EXPERIMENTAL RESULTS

In this section, we present our experimental results. First,
we compare the performance of different models described
in Section 3.3 and report the performance of different feature
groups. Second, we present the effect of embedding dimen-
sionality. Finally, we present a comparative result against
Google Search.

4.1 Performance of Different Models

In this section, we compare our model CnCxAPI with
other 8 baseline models. Table 2 shows the recommendation
performance by using different evaluation metrics discussed
in Section 3.2. We have the following observations:

(1) From Table 2, we note that the performance of P@k of
CnCxL2R significantly outperforms all the remaining base-
line models for all values of k(k = 1, 2, 5, 10) in our dataset.
We also conduct a statistical t-test and the results show
that the improvements between the CnCxAPI model and
the other 8 baselines are statistically significant (p < 0.05).
In particular, P@10 is very small because it is calculated
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TABLE 2
Performance (P@k,MAP and MRR) for different models. The bold formate indicates the best performance. † indicates that the difference

between the results of CnCxL2R and other models are significant with p < 0.05 under t-test.

Model P@1 P@2 P@5 P@10 R@1 R@2 R@5 R@10 MAP MRR

CnBM25 0.1334 0.1073 0.0743 0.0510 0.1128 0.1766 0.3021 0.4089 0.2214 0.2248
CnLDA 0.0854 0.0672 0.0435 0.0317 0.0789 0.1028 0.2343 0.3562 0.1637 0.1729
CnDoc2vec 0.1172 0.0879 0.6725 0.0487 0.9216 0.1321 0.2745 0.3698 0.1893 0.2014
LoCxBM25 0.1790 0.1461 0.1018 0.0719 0.1482 0.2368 0.4066 0.5641 0.2969 0.3032
LoCxLDA 0.1225 0.0942 0.0743 0.0519 0.0996 0.1508 0.2946 0.4029 0.2075 0.2107
LoCxDoc2vec 0.1341 0.1012 0.0677 0.0532 0.1084 0.1833 0.3278 0.4237 0.2368 0.2435
GloCxCos 0.1517 0.1228 0.0847 0.0607 0.1276 0.2022 0.3430 0.4817 0.2522 0.2575
GloCxAsy 0.1811 0.1523 0.1087 0.0834 0.1646 0.2573 0.4394 0.6233 0.3153 0.3364
CnCxL2R 0.2238† 0.1766† 0.1230† 0.0904† 0.1842† 0.2862† 0.4853† 0.7043† 0.3779† 0.3868†

by P@10 =
|D10∩Dg|

10 , where D10 is the set of top-10
recommended software documents and Dg is the set of
ground-truth documents. For most of discussion threads
on Stack Overflow, the best answers commonly contain
only one software document, so |D10 ∩Dg| = 1 in most
cases. Thus, the ideal value of P@10 is slightly above 0.1.
Although P@10 of CnCxL2R is very small (i.e., 0.0904), it
almost reaches the ideal value.

(2) The performance of R@k of CnCxL2R significantly
outperforms the other 8 baselines for all values of k(k =
1, 2, 5, 10) . It is worth noting that CnCxL2R achieves highest
recall (0.7043) at k = 10.

(3) We can also observe that the performance of MAP
and MRR of CnCxL2R significantly outperform all other
methods. The MAP of CnCxL2R is equal to 0.3779,
which achieves 70.69%, 130.84%, 99.63%, 27.28%, 82.12%,
59.58%, 49.84%, and 20.54% relative improvements over
CnBM25, CnLDA, CnDoc2vec, LoCxBM25, LoCxLDA, LoCx-
Doc2vec, GloCxCos and GloCxAsy, respectively. Likewise,
the performance of MRR of CnCxAPI achieves relative
improvements with 72.06%, 123.71%, 92.05%, 27.57%,
83.57%, 58.85%, 50.21%, and 14.98%, respectively.

(4) The context-based model outperforms corresponding
content-based model (e.g., LoCxBM25 better than CnBM25).
This observation confirms that there exists an information
gap between the intent in queries and the implementation
in software documentation.

(5) Another observation is that BM25-based models
(CnBM25 and LoCxBM25) achieve better performance than
topic-based models (CnLDA and LoCxLDA). The reason for
this difference may be that the length of query is short while
the length of software documentation is often long. In such
case, the query is not effectively represented in topic space.
Thus it leads to poor performance when retrieving software
documents using distributed topics of a query.

4.2 Performance of Different Feature Combinations

As shown in Table 1, we divide the 22 features into four
groups and three categories. In this Section, we investigate
the performance of different feature combinations in the
learning-to-rank framework.

As shown in Table 3, we totally produce eight feature
combinations in terms of feature groups and categories.
The first combination considers all of the 22 features in
the learning-to-rank schema. The combinations (i.e., #2 –
#8) consider all features excluding context features, textual
features, statistical-based features, popularity features, Q-
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Fig. 6. The impact of feature combinations on MAP.

class features, D-class features and QD-class features, re-
spectively. The results show that the improvements between
the first combination and the other seven combinations
are statistically significant at p < 0.05, in terms of MAP ,
MRR, P@1, P@10, R@1 and R@10. These results confirm
that these features derived from official documentation and
social context, are effective in recommending software doc-
umentation for developers.

We consider the first combination (i.e., #1 in Fig. 6) as
the baseline. Then we define the performance impact as
Pn−P1

P1
× 100%, where P1 is the performance metric of

the first combination, and Pn (n = 2, ..., 8) is the per-
formance metric from the second to eighth combination.
Fig. 6 shows the impact of different feature combinations on
MAP . We can observe that the second feature combination
(excluding context features) decreases the performance of
MAP by −4.65% compared with the first combination
(all features), and followed by −5.49%, −6.75%, −11.41%,
−4.27%, −23.69%, and −26.35% for the feature combina-
tion #2 to #8, respectively. Among the combinations of #2,
#3, #4, and #5, the performance of #5 (excluding popular-
ity features) is worst with impact of −11.41%. The sixth
combination (excluding query-dependent features) has little
effect with impact of −4.27%. On the contrary, the seventh
combination (excluding document-dependent features) and
eighth combination (excluding query-document dependent
features) have influential effect on MAP with impact of
−23.69% and −26.35%, respectively.

4.3 Effect of Embedding Dimensionality

The dimensionality of word embedding is an impor-
tant factor for embedding performance. Furthermore, the
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TABLE 3
Performance of different feature combinations. The bold formate indicates the best performance. † indicates that the difference between the results

of the first combination and other combinations are significant with p < 0.05 under t-test.

# Feature Combination MAP MRR P@1 P@10 R@1 R@10

1 all features 0.3779† 0.3868† 0.2238† 0.0904† 0.1842† 0.7043†
2 all features excluding context features 0.3611 0.3763 0.2104 0.0814 0.1739 0.6110
3 all features excluding textual features 0.3582 0.3747 0.2089 0.0886 0.1705 0.6868
4 all features excluding statistical-based features 0.3540 0.3700 0.2044 0.0895 0.1669 0.6950
5 all features excluding popularity features 0.3392 0.3533 0.1981 0.0803 0.1674 0.6281
6 all features excluding Q-class features 0.3624 0.3791 0.2172 0.0799 0.1792 0.6905
7 all features excluding D-class features 0.3055 0.3202 0.1700 0.0747 0.1394 0.5854
8 all features excluding QD-class features 0.2991 0.3098 0.1374 0.0854 0.1124 0.6565
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Fig. 7. The effect of different dimensionality of word embedding for
learning-to-rank.

performance of word embedding directly affects candidate
documentation selection and the context similarity feature
listed in Table 1. Thus, the word embedding can affect the
final ranking performance in many ways. When we train
the word representations, we need specify the parameter of
number of dimensionality. In this Section, we investigate the
effect of embedding dimensionality with values 50, 100, 200,
300, 400, 500, and 600.

Fig. 7 shows the effect of different dimensionality on
learning-to-rank schema in terms of MAP and MRR. We
observe that the increase of embedding dimensionality from
50 to 300, leads to a gradual improvement in performance.
The optimal performance can be achieved at the dimen-
sionality of 300. After 300 dimensions, the performance is
not improved significantly, while the training procedure
becomes extremely slow. Thus in this research, we set 300
as the value of the dimensionality.

4.4 Comparison with Google Search
Given a natural language query, the search engine of

Stack Overflow can only return a list of discussion threads
and could not directly retrieve software documentation.
However, Google search can return a list of software doc-
umentation. Moreover, Google search is the most popular
help-seeking tool when develops need to search for solu-
tions for programming problems. Thus, we compare the
results of CnCxL2R with the Google search engine.
4.4.1 Setup
Among the 2924 testing discussion threads, we randomly
select 30 discussion threads and consider the titles of these
discussion threads as queries. Note that the 30 queries
are not used in the training set and are listed in Table 4.
Given a natural language query, we first get a list of web
pages via Google search engine. As we focus on the official
documentation in this research, we restrict the retrieved
results through appending official sites in the queries. For
example, the first query in Table 4 was performed with “get

objects from a BlockingQueue site:docs.oracle.com/javase” using
Google search engine in August, 2016. For each query in
Table 4, we get the top-10 software documents by the Google
search engine and CnCxL2R separately.

We use three metrics [16], [51] to measure the perfor-
mance of the two list of software documents. The metric FR
represents the rank of the first relevant software documenta-
tion in the results list of a query. This metric is important as
most users scan the results from top to bottom. The smaller
the number of FR, the better the performance. The metric
RR5 denotes the relevancy ration of software documents in
the top 5 results. The metric RR10 represents the relevancy
ration of software documents in the top 10 results. RR5 and
RR10 range from 0 to 100. The higher the values of RR5
and RR10, the better the performance.

We recruited two developers who both are postdoctoral
fellows with 4-years+ programming experiences in Java, to
manually check the two lists generated by Google search
engine and CnCxL2R. Each software documentation in can-
didate list was marked relevant or irrelevant, indicating
whether the developer considered this software documen-
tation is related to the task in the query. The two developers
separately annotated the top 10 software documents for
each evaluated query and then we combine the results. If
any inconsistency found while combining the results, the
developers discussed among them and then remarked until
a consensus is reached. The Cohen’s kappa coefficient is
equal to 0.846, which shows that the two annotators have
a good agreement amongst themselves.

4.4.2 Comparison Results

Table 4 shows the performance comparison of Google search
and CnCxL2R. In particular, the symbol “-” in second col-
umn indicates that there is no relevant software documenta-
tion returned by Google search engine for the query. The last
row shows the average performance in terms of the defined
three metrics.

Compared to FR of Google search, CnCxL2R achieves
better performance with average FR of 1.3. For most of
the queries (23 out of 30 queries), CnCxL2R is able to
recommend relevant software documentation at the first
position in the result list. On the contrary, Google search is
able to handle only 11 queries in which the first returned
software documentation is relevant to the given query.
Specifically, for 5 out of 30 queries, Google search could
not return any relevant software documentation in top 10
results. The p-value of FR comparison shows that there is a
statistical significance of the improvement of CnCxL2R over
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TABLE 4
Comparison between Google search and CnCxL2R (FR: the rank of the first relevant documentation. RR5: top 5 relevancy ratio. RR10: top 10

relevancy ratio. “java.xxx.xxx” indicates Java API documentation. “specs_xxx/xxx” indicates Java language specification. “tutorial/xxx/xxx” indicates
Java tutorial. † indicates the differences between CnCxL2R and Google are significant with p < 0.05 under t-test.)

query Google Search CnCxAPI Top 3 relevant documents by CnCxL2R

FR RR5 RR10 FR RR5 RR10

get objects from a BlockingQueue 1 20 60 1 40 80 java.util.concurrent.BlockingQueue; java.util.concurrent.ArrayBlockingQueue;
java.util.concurrent.ConcurrentLinkedQueue

java string split inconsistency 6 0 20 1 60 70 java.lang.String.split(); java.lang.String.substring(); java.lang.String.contains()
create a Series using Iterators 2 40 20 2 60 40 java.util.Iterator; java.util.Iterable; java.util.ListIterator

rules governing narrowing of double to int 1 20 30 1 60 60 specs_5.1.3. Narrowing Primitive Conversion; specs_3.10.2. Floating-Point Literals;
specs_15.25. Conditional Operator ? :

add submenu to MenuItem 1 80 70 2 40 20 tutorial/uiswing/components/dialog.html; tutorial/uiswing/components/menu.html;
tutorial/uiswing/layout/visual.html

show a timer in a Java Frame 1 40 30 1 60 50 tutorial/uiswing/misc/timer.html; java.util.Timer; javax.swing.Timer
create utility to cast objects to beans 5 20 10 4 40 40 java.lang.Class.cast(); java.lang.Object.getClass(); java.lang.Class.getResourceAsStream()

java Client/Server App will not readLine() - 0 0 1 60 80 java.io.BufferedReader.readLine(); java.io.InputStream.read();
tutorial/networking/sockets/clientServer.html

synchronize concurrent collections 1 20 10 1 100 90 java.util.concurrent.ConcurrentHashMap; java.util.concurrent.ConcurrentLinkedQueue;
java.util.Collections.synchronizedList()

pull double out of string with matcher - 0 0 1 80 70 java.util.regex.Matcher; java.util.regex.Pattern; java.lang.String.matches()
java hashcode() collision for objects - 0 0 1 60 50 java.lang.Object.hashCode(); java.lang.String.hashCode(); java.lang.System.identityHashCode()
java reverse string 1 60 50 2 60 40 java.lang.StringBuilder; java.lang.String.format(); java.lang.String.compareTo()
get char from multi-string array 3 40 30 1 100 60 java.lang.String.charAt(); java.lang.String.split(); java.lang.String.replace()
search for the index of an element in an array 1 40 30 1 80 50 java.util.Arrays.binarySearch(); tutorial/java/nutsandbolts/arrays.html; java.util.ArrayList.get()
replce last space in a string 2 40 20 1 100 80 java.lang.String.trim(); java.lang.String.split(); java.lang.String.indexOf()

different font for combo box in Java 4 20 10 1 60 40 tutorial/uiswing/components/combobox.html#renderer; java.awt.Font;
tutorial/uiswing/components/combobox.html

add days to date in Java 4 20 30 1 100 70 java.text.SimpleDateFormat; api.java.util.Date; java.text.DateFormat
support println in a class 1 20 10 1 100 70 java.io.PrintStream.println(); api.java.lang.Object; java.lang.System.setOut()
remove row from jtable 1 40 30 1 80 70 javax.swing.table.DefaultTableModel; javax.swing.JTable; javax.swing.table.AbstractTableModel
primitive cast and assignments in Java 2 40 30 1 60 60 spec_5.2. Assignment Contexts; spec_3.10.2. Floating-Point Literals; spec_5.5. Casting Contexts

draw points as ovals using java swing 1 60 60 1 100 80 tutorial/uiswing/painting/index.html; javax.swing.JComponent.paintComponent();
tutorial/uiswing/concurrency/dispatch.html

julian date to regular date conversion 2 20 10 1 60 80 java.text.SimpleDateFormat; api.java.util.Date; java.text.DateFormat
reinitialise transient variable - 0 0 3 40 60 java.io.Serializable; specs_15.28. Constant Expressions; java.util.Scanner
invalid class exception: no valid constructor 5 20 20 1 40 50 java.io.Serializable; java.lang.Class.newInstance(); java.lang.IllegalArgumentException

combine explicit locks with synchronized methods 1 100 50 1 80 70 java.util.concurrent.locks.ReentrantLock; java.util.concurrent.locks.Lock;
tutorial/essential/concurrency/locksync.html

parse a number from a string 2 40 40 3 40 70 java.text.SimpleDateFormat; java.lang.Integer.parseInt(); java.text.NumberFormat.parse()
format double with zeros on left and right side - 0 0 1 60 70 java.text.DecimalFormat; tutorial/uiswing/layout/visual.html; api.java.util.Formatter

wait for a key to be pressed inside loop 4 20 20 1 60 60 tutorial/uiswing/misc/keybinding.html; tutorial/uiswing/concurrency/dispatch.html;
tutorial/uiswing/events/keylistener.html

get single bytes from multi-byte variable in java 3 20 20 1 40 50 java.nio.ByteBuffer; java.lang.String.String(); spec_5.2. Assignment Contexts
change PWD of linux from JSP - 0 0 2 40 60 java.lang.Runtime.exec(); java.lang.ProcessBuilder.directory(); java.util.ResourceBundle
average > 2.3 28 24 1.3† 65† 61†

Google search. Compared to the Google search (average
RR5 is 28 and average RR10 is 24), CnCxL2R achieves
much higher average value for RR5 (65) and RR10 (61).
Therefore, CnCxL2R can recommend much more relevant
software documents in top 10 results than Google search.
The differences between these two approaches in terms of
RR5 and RR10 are statistically significant at p < 0.05.

The last column shows the top three relevant docu-
ments recommended by CnCxL2R, which consist of Java
API documents, Java language specifications and Java tu-
torials. We observe that CnCxL2R can more effectively
respond to bug-like queries over Google search. For in-
stance, Google search could not return relevant API doc-
umentation given the query “java Client/Server App will
not readLine()”, but CnCxL2R can recommend eight rel-
evant API documents in top 10 results. More impor-
tantly, the first recommended software documentation (
java.io.BufferedReader.readLine()) is extremely
relevant to the query. Likewise, CnCxL2R can recommend
five relevant software documents whereas the Google search
can only return one document with respect to the exception
query “invalid class exception: no valid constructor”.

Another observation is that CnCxL2R can effectively
respond to those queries which do not contain API-like
words. For example, the query “format double with zeros
on left and right side” does not explicitly contain API-like
words. Thus, Google search cannot effectively handle this
case and fails to return any relevant software documents.
However, CnCxL2R can recommend seven high quality soft-
ware documents including java.text.DecimalFormat
and api.java.util.Formatter. In the same way, for
the query “reinitialise transient variable” and “change PWD
of linux from JSP”, CnCxL2R can recommend extremely rel-

evant software documents java.io.Serializable and
java.lang.Runtime.exec(), respectively. In such cases,
CnCxL2R can bridge the lexical gap and identify the seman-
tics between the query and the documentation.

However, CnCxL2R cannot recommend good software
documentation for some queries. For example, for the query
“create utility to cast objects to beans”, CnCxL2R cannot rec-
ommend any documentation about “beans”. After manually
checking our training dataset, we find that there is not
enough context about the topic “beans”. This causes the
coverage of this query incomplete. In the future, we will
collect more context of different topics and improve the
coverage of our training dataset accordingly.

5 THREATS TO VALIDITY

The automatically annotated data is one of the threats
to validity of our experiment. We built the ground-truth
dataset via judging software documents in the best answers
in Section 4.1. For some cases, the recommended software
documents which are not in the best answer, may be useful
for the issued query. It was a tedious task to annotate the
ground truth of the 14, 944 discussion threads in our corpus.
However, our human evaluation provides a supplementary
study about this threat. The experiment setting of automatic
evaluation makes the P@k very low, but CnCxL2R almost
reaches the ideal value. Even so, the high values of R@k
indicate the validity of CnCxL2R.

In Section 4.4, we employed two annotators to label the
two recommended lists generated by Google search and
CnCxL2R. This is a threat to validity because the judgments
are based on the knowledge background of the two anno-
tators. For a natural language query about programming
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task, there are many approaches to implement the task with
different APIs. To make it more reliable, we require the two
annotators to discuss until consensus is reached when a
judgment is inconsistent for a query. The relevant software
documents reflect the most common implementations for
the programming task in a query. We believe that the
discussion can eliminate the threat to some extent.

Another threat is the training data. In our approach, the
local context and global context are from the discussion
threads on Stack Overflow. Most of the contexts are free-
form texts posted by the users of Stack Overflow, rather
than the quotation of official documentation. For the free-
form texts posted by users, there may be spelling mistakes
and typos. However, the quality of the best answers is better
than other answers on Stack Overflow [52]. Thus, we restrict
the context in best answers and we believe it can eliminate
the threat to some extent.

Last but not least, the coverage of the training data is
a threat to validity. In this study, we only test the per-
formance of CnCxL2R on Java documentation and collect
the discussion threads about Java topic on Stack Overflow.
The coverage of the training dataset potentially affects the
query response performance. In this study, the performance
on Java related programming task is reasonable. It is still
uncertain how CnCxL2R will perform on other datasets.
In future, we will perform more evaluations on different
training sets and create a better training set.

6 RELATED WORK

In this Section, we present a literature review on mining
software documentation, divided into API usage, API rec-
ommendation and harnessing Stack Overflow data.

6.1 API usage and API Recommendation

There is a number of techniques which mine API usage [53]–
[55] and recommend APIs from the perspectives of the
content of documentation and code corpus.

API usage patterns are frequent API method call se-
quences. Xie et al. [53] presented MAPO, which mined API
usages from open source repositories based on existing
source code search engines. Given a query consisting of
method names or class names, MAPO can generate a list
of method call sequences. Wang et al. [54] developed API
usage pattern miner (UP-Miner) to mine succinct and high-
coverage API usage patterns from source code. Given a
user-specified API method, UP-Miner returns code snip-
pets as reuse candidates via mining frequent closed API-
method invocation sequences. Acharya et al. [56] developed
a framework to automatically extract frequent partial orders
among user-specified APIs, assisting effective API reuse and
checking. Moritz et al. [57] presented Export, which can
automatically mine and visualize API usages in large source
code repositories. Given a starting API, Export can recom-
mend complex API usage examples from a large repository.

Recently, Pham et al. [58] proposed an approach to learn
API usages from bytecode of Android mobile applications,
which uses Hidden Markov Model to represent method call
sequences. Raghothaman et al. [51] presented SWIM to cap-
ture API usage patterns based on the defined call sequences.

TABLE 5
Comparison with other related approaches. Column Information

specifies that which information is used in each approach (Source
Code (SC), Content of Documentation (CN), Context on Stack Overflow
(CX). Column Input Type specifies the input format for each approach.

Column Output Type specifies the output format for each approach.

Approach Information Input Type Output Type

MAPO [53] SC API name API usage
UP-Miner [54] SC API name API usage
ExPort [57] SC API name API usage
SWIM [51] SC API-like query API usage
DeepAPI [16] SC API-like query API usage
XSnippet [62] SC Code snippet Code snippet
Baker [4] CN Code snippet Software documentation
Krec [17] CN Code snippet Software documentation
TaskNavigator [11] CN Semi-free-form Section fragment
ROSF [63] SC Free-form Code snippet
Portfolio [59] SC Free-form API usage
RACK [15] CX Free-form API class
CnCxL2R (our) CN, CX Free-form Software documentation

SWIM is based on open-source code repositories and click-
through data from the Bing search engine. Gu et al. [16]
developed DeepAPI, a deep learning approach to capture
API usage sequences using the Recurrent Neural Network
encoder-decoder models. Compared to SWIM, DeepAPI can
recommend more accurate API usage sequences.

McMillan et al. [59] developed Portfolio to recommend
and visualize relevant APIs and their usages for code search.
Their experiments show that Portfolio can find more rele-
vant APIs compared to Google Code Search. Given simple
text phrases, Chan et al. [60] proposed subgraph search
approach for API recommendation via modeling API in-
vocations as an API graph. Thung et al. [61] developed a
technique which recommends API methods for a query of
textual description of a feature request.

Recently, Subramanian et al. [4] developed a constraint-
based approach to identify fine-grained type references,
method calls, and field references in source code snippets.
This approach can correctly link source code examples to
official API documentation. Robillard et al. [17] developed
a technique to automatically detect knowledge items and
extract word patterns in software documentation. They use
these patterns to recommend reference API documentation
for code fragments. Rahman et al. [15] proposed RACK,
using regular expressions to extract API class and to build
keyword-API associations from the posts on Stack Overflow.
Given some code search keywords, RACK can recommend
a list of relevant API classes. This work is close to our work,
but it is based on Java class level instead of Java method
level. Moreover, it did not exploit the content of official
documentation instead of using keyword-API co-occurrence
of social context.

Different from the existing work from the view points
of program analysis and mining code repositories, our ap-
proach exploits the official content of documentation and
high-quality social context on Stack Overflow for recom-
mendation. A relative comparison of our approach with the
existing approaches is presented in Table 5.

6.2 Harnessing Stack Overflow Data

The Stack Overflow data has attracted much research in-
terest [64]–[66] in recent years. Some tools were developed
for assisting software development. Bacchelli et al. [67]
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developed Seahawk, an Eclipse plugin that can automat-
ically integrate crowd knowledge of Stack Overflow into
the Integrated Development Environment (IDE). This tool
brings the convenience for developers that they can directly
access Stack Overflow data without switching their work
context. Ponzanelli et al. [68] presented Prompter, a self-
confident recommender system that automatically searches
and identifies relevant Stack Overflow discussions under
the code context in the IDE. San Pedro et al. [69] pro-
posed RankSLDA, recommending questions for collabora-
tive Q&A systems based on developers’ topics of expertise.
Cordeiro et al. [70] developed a tool, recommending ques-
tion answering web resources in IDE based on the informa-
tion of exception stack traces. Treude et al. [10] presented
SISE, automatically augmenting API documentation with
“insight sentences” from Stack Overflow.

In addition, some researchers have contributed their
efforts for program comprehension using Stack Overflow
data. The study [71] revealed that their tool and Stack
Overflow data are capable of sometimes coming up with
surprising insights that aid a developer both for program
comprehension and software development. Treude et al. [72]
investigated how developers ask and answer questions on
the Web. Linares-Vásquez et al. [73] took an empirical study
on how do API changes trigger Stack Overflow discussions.
Recently, Nadi et al. [3] performed an empirical investigation
into the obstacles developers face while using the Java
cryptography APIs based on 100 StackOverflow posts, 100
GitHub repositories, and survey input from 48 developers.

In contrast to these work, the goal of our approach is
to bridge the information gap between natural language
query and official software documentation harnessing Stack
Overflow data.

7 CONCLUSION AND FUTURE WORK

Traditional code search engines and existing API recom-
mendation systems often do not perform well with natural
language queries, especially which do not contain API-like
terms. In this paper, we attempt to leverage official content
and social context to recommend software documentation.
Our proposed solution, named CnCxL2R, exploits the offi-
cial content and social context in a learning-to-rank schema.
We identify 22 features to learn a ranker. We conduct a set of
experiments to evaluate the effectiveness of our approach.
The results of these experiments show that CnCxL2R outper-
forms 8 baseline models and is effective for natural language
queries.

As future work, we plan to create a better training set
with higher coverage for improving the performance of
recommendation. As human feature engineering consumes
massive manpower, we will also investigate the automatic
feature engineering in our approach using deep learning.
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