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Sentiment Analysis
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Abstract—Text segmentation is a fundamental task in natural language processing. Depending on the levels of granularity, the task
can be defined as segmenting a document into topical segments, or segmenting a sentence into elementary discourse units (EDUs).
Traditional solutions to the two tasks heavily rely on carefully designed features. The recently proposed neural models do not need
manual feature engineering, but they either suffer from sparse boundary tags or cannot efficiently handle the issue of variable size
output vocabulary. In light of such limitations, we propose a generic end-to-end segmentation model, namely SEGBOT, which first uses
a bidirectional recurrent neural network to encode an input text sequence. SEGBOT then uses another recurrent neural networks,
together with a pointer network, to select text boundaries in the input sequence. In this way, SEGBOT does not require any hand-crafted
features. More importantly, SEGBOT inherently handles the issue of variable size output vocabulary and the issue of sparse boundary
tags. In our experiments, SEGBOT outperforms state-of-the-art models on two tasks: document-level topic segmentation and
sentence-level EDU segmentation. As a downstream application, we further propose a hierarchical attention model for sentence-level
sentiment analysis based on the outcomes of SEGBOT. The hierarchical model can make full use of both word-level and EDU-level
information simultaneously for sentence-level sentiment analysis. In particular, it can effectively exploit EDU-level information, such as
the inner properties of EDUs, which cannot be fully encoded in word-level features. Experimental results show that our hierarchical
model achieves new state-of-the-art results on the Movie Review and Stanford Sentiment Treebank benchmarks.

Index Terms—Natural Language Processing, Text Segmentation, Sentiment Analysis, Pointer Networks, Hierarchical Attention
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1 INTRODUCTION

T EXT segmentation has been a fundamental task in natu-
ral language processing (NLP) that has been addressed

at different levels of granularity. At a coarse level, text
segmentation generally refers to breaking a document into
a sequence of topically coherent segments, often known
as topic segmentation [1], [2]. Topic segmentation is typ-
ically considered as a pre-requisite for other higher level
discourse analysis tasks (e.g., discourse parsing [3]), and
has been shown to support a number of downstream NLP
applications including text summarization [4] and passage
retrieval [5], [6]. At a finer level, text segmentation refers to
breaking each sentence into a sequence of elementary dis-
course units (EDUs), often known as EDU segmentation [7].
As exemplified in Figure 1, EDUs are clause-like units that
serve as building blocks for discourse parsing in Rhetorical
Structure Theory [8]. EDU segmentation is also useful for
text compression [9].

Both topic and EDU segmentation have received a lot of
attention in the past due to their utility in many NLP tasks.
Although related, these two tasks are typically addressed
separately with different sets of approaches; see [10] for
an overview. Both supervised and unsupervised methods
have been proposed for topic segmentation. Unsupervised
segmentation models exploit the strong correlation between
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[A rather average action film]EDU1 [that benefits from several
funny moments]EDU2 [supplied by Epps.]EDU3

Fig. 1. A sentence with three elementary discourse units (EDUs).

topic and lexical usages, and can be broadly categorized
into two classes: similarity-based models and probabilistic
generative models. The similarity-based models are based
on the key intuition that sentences in the same segment are
more similar to each other than to sentences in the preceding
or the following segment. Examples of this category are
TextTiling [1], C99 [2], and LCSeg [11]. Probabilistic gen-
erative models are based on the intuition that a discourse
is a hidden sequence of topics, each of which has its own
characteristic word distribution. Variants of Hidden Markov
Models (HMMs) and Latent Dirichlet Allocations (LDAs)
fall into this class [12]–[14]. Supervised topic segmentation
models are more flexible in using more features (e.g., cue
phrases, length and similarity scores) and generally perform
better than unsupervised models. However, they come with
the price of requiring extensive efforts to manually design
informative features and annotate large amounts of data.
For EDU segmentation, HILDA [15], SPADE [16], F&R [17]
and DS [3] are successful systems that use lexical and
syntactic features in a supervised manner.

While most existing text segmentation methods use lex-
ical similarity based on surface terms (i.e., words), it is
now generally admitted that lexical semantics are better
captured with distributed representations [18], [19]. Further-
more, existing supervised models, for both topic and EDU
segmentation, require a large set of features manually de-
signed for each task and domain, which demands task and
domain expertise [10]. We envision a system that is based
on distributed representation, and that can learn informative
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Fig. 2. Two classical models for sequence labeling.

features for each task and domain by itself without requiring
human effort. In this paper, we propose a neural architecture
that can achieve this goal.

Both topic and EDU segmentation can be treated as
sequence labeling problems, where the task is to predict a
sequence of ‘yes/no’ boundary tags at the level of sentences
in a document (for topic segmentation) or words in a sen-
tence (for EDU segmentation). Conditional random fields
(CRFs) have been the classical models for such sequence
labeling tasks in NLP [20]. More recently, recurrent neural
networks with a CRF output layer (RNN-CRF), as shown
in Figure 2(a), have provided state-of-art results in many
sequence tagging tasks in NLP [21], [22]. However, due
to the sparsity of ‘yes’ boundary tags in EDU and topic
segmentation tasks, CRFs do not provide any additional
gain over simple classifiers like MaxEnt [3], [17].

Instead, we cast our segmentation problems as sequence
prediction tasks with encoder-decoder (known as seq2seq)
models. Figure 2(b) shows a toy encoder-decoder model,
which uses an RNN to encode an input sequence and then
uses another RNN as a language model to generate/predict
the output sequence. However, one limitation of this basic
model is that the output vocabulary (i.e., from which O1
and O2 are drawn) is fixed, so different models must be
retrained with respect to different vocabularies. Whereas in
our tasks, the segmentation positions depend on the input
sequence. For example, there are three segment boundaries
– units U3, U6, and U8 in Figure 4. To alleviate these
issues, we propose SEGBOT, a generic end-to-end neural
model for text segmentation at various levels of granular-
ity [23]. SEGBOT uses distributed representations to bet-
ter capture lexical semantics, and employs a bidirectional
RNN to model sequential dependencies while encoding a
text. The decoder, which is an unidirectional RNN, uses a
pointer mechanism [24], [25] to infer the segment boundaries.
In addition, SEGBOT can effectively handle variable size
vocabulary in the output to produce segment boundaries
depending on the input sequence.

Furthermore, we choose sentence-level sentiment anal-
ysis as a downstream application of SEGBOT. Sentiment
analysis, also known as opinion mining, is the computa-
tional study of people’s opinions, sentiments, emotions, ap-
praisals, and attitudes from written languages [26]. Due to
the increasing number of opinions and reviews on the inter-
net, sentiment analysis has become a hot topic in knowledge
discovery. As shown in Figure 3, we observe that 1) The
overall sentiment of a sentence can be derived from different
EDUs, each of which conveys a certain degree of sentiment
polarity. For example, the overall sentiment is “negative”,
which is derived from EDU1, even though the EDU2 is
“positive”. 2) The sentiment of an EDU can be derived from
different words, each of which has a different contribution.

[A rather average action film]EDU1: negative [that benefits
from several funny moments]EDU2: positive [supplied by
Epps.]EDU3: neutral

Fig. 3. The sentiment polarity of EDUs.

For example, “funny” should be paid more attention to in
EDU2. Based on these two intuitions, we propose a hierar-
chical attention model that takes advantage of both word-
level and EDU-level information simultaneously for senti-
ment analysis. Different from existing sentiment analysis
approaches [27], [28] which require expensive phrase-level
annotations, our hierarchical attention model can exploit
hierarchical structures to understand sentence sentiment in
a lightweight manner (i.e., only requiring the output of
SEGBOT). More importantly, our hierarchical model allows
us to make full use of EDU-level information, such as the
inner properties of EDUs, which cannot be fully encoded in
word-level features.

In summary, we make the following contributions:
• We proposed SEGBOT– a generic end-to-end model

for text segmentation at various levels of granular-
ity. SEGBOT learns informative features automatically
while alleviating the problem of tag sparsity in output
sequences and the problem of variable size output
vocabulary.

• We conducted experiments to evaluate the effectiveness
of SEGBOT at two levels of granularity: document-level
topic segmentation, and sentence-level EDU segmenta-
tion. The results show that SEGBOT achieves new state-
of-the-art results on both tasks.

• We implemented SEGBOT with a web application and
provided users with Application Programming Inter-
face (API): http://138.197.118.157:8000/segbot/. So far,
2300 users have visited our tool, from 30 countries.

• Based on the outcomes of SEGBOT, we proposed a
hierarchical attention model to make full use of both
word-level and EDU-level information simultaneously
for sentence-level sentiment analysis.

• We conducted experiments to evaluate the effectiveness
of our hierarchical attention model. Experimental re-
sults show that our hierarchical model achieves new
state-of-the-art results on the Movie Review and Stan-
ford Sentiment Treebank benchmarks.

2 RELATED WORK

2.1 Text Segmentation
The existing approaches for text segmentation fall into two
categories: unsupervised methods and supervised methods.
One branch of unsupervised methods is based on lexical
cohesion, which states that similar vocabulary tends to be
in a part of a coherent topic segment. Hearst et al. [1]
introduced TextTiling, which is the most famous and earliest
algorithm for text segmentation. TextTiling is based on the
fact that high vocabulary intersection between two adjacent
blocks is taken to mean high coherence and vice versa.
C99 [2] is an algorithm based on divisive clustering with
a matrix-ranking schema. LSeg [11] uses a lexical chain to
identify and weight word repetitions. U00 [29] is a probalis-
tic approach using dynamic programming to find a segment
with minimum cost.

http://138.197.118.157:8000/segbot/
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The other branch of unsupervised methods is based on
topic modeling. The idea is to induce the semantic relation-
ship between words and to use the frequency of a topic
assigned to words by Latent Dirichlet Allocation to build a
sentence vector. For example, TopSeg [30] was the first work
to use the probabilistic latent semantic analysis to derive
latent representations of segments. More recent models [31]–
[33] employ the LDA to compute the latent topics and
achieve superior performance to previous models.

Several approaches have investigated supervised learn-
ing in text segmentation. Fisher et al. [17] trained a classifier
using a general machine learning approach and a range of
finite-state and context-free derived features. Hernault et
al. [15] used conditional random fields to train a discourse
segmenter with a set of lexical and syntactic features. Joty
et al. [3] trained a binary classifier to decide for each
whether to place an EDU boundary using lexico-syntactic,
shallow syntactic and contextual features. Different from
these existing studies that use many hand-crafted features,
our approach does not need manual feature engineering for
text segmentation. To the best of our knowledge, our generic
model is the first one using a neural architecture in text
segmentation.

2.2 Sequence Labeling
Sequence labeling is a fundamental task in NLP, which
includes part-of-speech tagging [34], chunking [35], named
entity recognition (NER) [36] and so on. Classical methods
employ machine learning models, like the hidden markov
model [37] and conditional random fields (CRFs) [38], and
have achieved relatively high performance. The drawback
of these approaches is that they require large amounts of
task-specific knowledge in the form of hand-crafted features
and data pre-processing.

Recently, many neural network models have been suc-
cessfully applied to sequence labeling. The use of neural
models for NER was pioneered by [39], where an archi-
tecture based on temporal convolutional neural networks
(CNNs) over word sequence, was proposed. Based on the
recent taxonomy [40], a neural model for sequence labeling
is composed of distributed representations for input, a context
encoder, and a tag decoder. Some typical approaches for dis-
tributed representations for input include continuous bag-
of-words (CBOW) and continuous skip-gram models [41].
In addition, there are two widely-used architectures for ex-
tracting character-level representation: CNN-based models
[22], [42], [43] and RNN-based models [44]–[46].

A context encoder is used to capture the context de-
pendencies for sequence labeling. Some studies [39], [47]
have employed a CNN as the context encoder. For example,
Strubell et al. [47] proposed Iterated Dilated Convolutional
Neural Networks (ID-CNNs), which have better capacity
than traditional CNNs for large context and structured
prediction. The work by Huang et al. [48] is among the first
to utilize a bidirectional Long Short-Term Memory (LSTM)
CRF architecture for sequence tagging tasks (POS, chunking
and NER). Following [48], a body of works [21], [22], [49]–
[51] applied a bidirectional LSTM (BiLSTM) as the basic
architecture to encode sequential context information.

A tag decoder takes context-dependent representations
as input and produces a corresponding sequence of tags. For

example, these work [21], [22] applied a LSTM network to
encode the input sequence, and used a CRF layer to decode
the tag sequence. Prior work along these lines is limited in
text segmentation because Markov dependencies between
tags cannot be effectively captured due to the sparsity of
output sequence tags [3]. Some approaches [52], [53] apply
a LSTM layer to produce the tag sequence. The drawback of
these approaches is that the output dictionary is fixed and
is not dependent on the input sequence. Compared with
existing architectures, the main difference in our proposed
SEGBOT is that our tag decoder is a pointer network,
not CRF. Our model effectively captures sequential depen-
dencies when boundary tags are sparse, while alleviating
variable size vocabulary in the output to produce entity
boundaries depending on the input sequence. In addition,
Zhai et al. [54] proposed a model for sequence chunking
based on pointer networks, which is most related to our
work. Different from Zhai’s model, our proposed model
directly infers the start and end boundaries of an entity
using a same network, which leads to a simpler architecture
with fewer parameters.

2.3 Sentiment Analysis
Sentiment analysis has been growing to one of the most
active research fields in NLP [26]. It has been widely used in
various domains, including finance [55], marketing [56] and
health [57]. While early approaches made use of handcrafted
rule-based algorithms, modern ones most often resort to
deep learning techniques. We organize them along two
different axes: traditional sentiment analysis and deep-learning
based sentiment analysis.

Traditional sentiment analysis has produced many tech-
niques in different use cases, including both unsupervised
and supervised methods. In the unsupervised setting, it is
not necessary to acquire annotated training data. Instead,
these approaches resort to sentiment lexicons, grammati-
cal analysis, and syntactic patterns. For example, Kamps
et al. [58] investigated a graph-thoretic model based on
WordNet, and proposed measures that determine the se-
mantic orientation of adjectives for three factors of subjec-
tive meaning. In the supervised setting, sentiment analysis
can be framed as the problem of supervised classification.
Classical supervised algorithms like Naive Bayes [59], [60],
K-nearest neighbor [61], and Support Vector Machine [62],
have been widely used in sentiment analysis. Despite their
effectiveness, feature-based supervised approaches are labor
intensive and require considerable amounts of engineering
skills and domain expertise.

Deep learning has proven greatly successful in many
natural language processing tasks [40], [63], [64]. It allows a
machine to be fed raw data, which can be used to automati-
cally discover latent representations and processing needed
for classification or detection. Various neural models have
been proposed to detect text sentiment at different levels of
granularity: document level [65], sentence level [27], [66],
and aspect level [67]. Here, we summarize existing studies
of sentence-level sentiment analysis because our work be-
longs to this category. Socher et al. [27] first introduced a
semi-supervise recursive autoencoder network for sentence
level sentiment analysis. Dong et al. [28] proposed an adap-
tive recursive neural network for target-dependent Twitter
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sentiment classification. Such recursive models learn vector
space representations for multi-word phrases recursively, in-
stead of through a bag-of-words model. However, annotat-
ing all subphrases can be expensive. Recently, CNN-based
[68], [69] and RNN-based [66], [66], [70]–[72] models have
become more popular in sentiment analysis, because they
do not require parse trees to extract tree-structured features
from sentences. For example, Qian et al. [66] proposed a
linguistically regularized LSTM for sentiment classification,
aiming to model the linguistic role of sentiment lexicons,
negation words, and intensity words. Wang et al. [72]
developed an RNN-Capsule network based on recurrent
neural networks for sentence-level sentiment analysis. Tai
et al. [73] introduced a generalization of the standard LSTM
architecture to tree-structured network topologies. Zhang et
al. [74] proposed a tree communication model using graph
convolutional neural network and graph recurrent neural
network, which allows rich information exchange between
phrases constituent tree.

3 SEGBOT: NEURAL TEXT SEGMENTATION

To address the problem of sparse boundary tags and vari-
able output vocabularies in text segmentation, we propose
a generic segmentation model, namely SEGBOT, that can
perform text segmentation at various levels of granularity,
e.g., document-level topic segmentation and sentence-level
EDU segmentation.

3.1 Model Architecture
Figure 4 illustrates the model architecture of SEGBOT,
which consists of three components: a context encoder, a
boundary decoder and a boundary pointer. It is worth
emphasizing that SEGBOT is a generic model. Depending
on the granularity of the task, the units in the input (i.e., U0
to U8) can be either sentences in a document (for topic seg-
mentation) or words in a sentence (for EDU segmentation).

For input unit representation, distributed representation
is an efficient method to capture a large number of precise
syntactic and semantic unit relationships [75]. In SEGBOT,
we first represent each input unit with a distributed repre-
sentation. For words, we use GloVe [76], which provides
good representations that are validated on various NLP
tasks, including text classification and reading comprehen-
sion. For sentences, we use the embeddings from [77], which
were shown to outperform many sophisticated supervised
methods on various textual similarity tasks.

Formally, given an input sequence U =
(U1, U2, . . . , UN ) of length N , we get its distributed
representations X = (x1,x2, . . . ,xN ) by looking up
the corresponding embedding matrix, where xn ∈ RK

is the representation for the unit Un, with K being the
dimensions. Our ultimate goal is to split the input sequence
into contiguous segments by identifying the boundaries
(e.g., U3, U6 and U8 in Figure 4).

3.2 Context Encoder
We encode the input sequence X = (x1,x2, . . . ,xN ) using
an RNN. RNNs capture sequential dependencies, and with
hidden cells like LSTMs [70] and gated recurrent units

(GRUs) [78], it can capture long distance dependencies
without running into the problems of gradient vanishing
or explosion. In our model, we use a GRU to encode input
sequences, which is similar to LSTM but is computationally
cheaper.

Recall that xn ∈ RK is the representation of Un. The
GRU activations at time step n are computed as follows:

zn = σ(Wzxn +Rzhn−1 + bz) (1)
rn = σ(Wrxn +Rrhn−1 + br) (2)
nn = tanh(Whxn +Rh(rn ⊙ hn−1) + bh) (3)
hn = zn ⊙ hn−1 + (1− zn)⊙ nn (4)

where σ() is the sigmoid function, tanh() is the hyperbolic
tangent function, ⊙ is an element-wise multiplication, zn is
the update gate vector, rn is the reset gate vector, nn is the
new gate vector, and hn is the hidden state at time step n.
W , R, b are the parameters of the encoder that we need to
learn.

We use a bi-directional GRU (BiGRU) network to memo-
rize past and future information in the input sequence. Each
hidden state of the BiGRU is formalized as:

hn =
−→
h n ⊕

←−
h n (5)

where ⊕ indicates a concatenation operation, and
−→
h n and←−

h n are hidden states of forward (left-to-right) and back-
ward (right-to-left) GRUs, respectively. Assuming the size
of the GRU layer is H , the encoder yields hidden states in
h ∈ RN×2H .

3.3 Boundary Decoder

Since the number of boundaries in the output vary with
the input, it is natural to use RNN-based models to decode
the output due to their ability to deal with variable lengths
of sequences (note that not variable output vocabulary). At
each step, the decoder takes a start unit (i.e., the start of a
segment) Um in the input sequence as input and transforms
it to its distributed representation xm by looking up the cor-
responding embedding matrix. It then passes xm through
a GRU-based (unidirectional) layer. Formally, the decoder’s
hidden state at a given time step is computed by:

dm = GRU(xm,θ) (6)

where θ are the parameters in the hidden layer of the de-
coder, which have the same form as described by Equations
(1) – (4). If the input sequence contains M boundaries, the
decoder produces hidden states in d ∈ RM×H , with H being
the dimensions of the hidden layer.

3.4 Boundary Pointer

Unlike traditional seq2seq models, the output dictionary is
fixed in each time step of decoder RNNs. In our case, it
heavily depends on the input sequence. At each step, the
output layer of our decoder computes a distribution over
the possible positions in the input sequence for a possible
segment boundary. For example, considering Figure 4, as
the decoder starts with input U0, it computes an output
distribution over all positions (U0 to U8) in the input
sequence. Then, for U4 as input, it computes an output
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Fig. 4. The model architecture of SEGBOT. Input sequence: {U0, U1, ..., U8}. Identified boundaries (red color): {U3, U6, U8}. SEGBOT consists of
three components: a context encoder, a boundary decoder and a boundary pointer. Given U0 as the decoder input, SEGBOT computes an output
distribution over positions U0 to U8. Then with U4 as the decoder input, SEGBOT computes a distribution over U4 to U8, and U6 is identified as
the boundary. Finally, with U7 as the decoder input, SEGBOT computes a distribution over U7 to U8.

distribution over positions U4 to U8 and, finally, for U7
as input, it computes a distribution over U7 to U8. Note
that unlike traditional seq2seq models (e.g., the ones used
in neural machine translation), where the output vocabulary
is fixed, in our case the number of possible positions in the
input sequence changes at each decoding step. To deal with
this, we use a pointing mechanism [24] in our decoder.

Recall that h ∈ RN×2H and d ∈ RM×H are the hidden
states in the encoder and decoder, respectively. We use an
attention mechanism to compute the distribution over the
possible positions in the input sequence for decoding with
input symbol Um:

um
j = vT tanh(W1hj +W2dm), for j ∈ (m, . . . ,M) (7)

p(ym|xm) = softmax(um) (8)

where j ∈ [m,M ] indicates a possible position in the
input sequence, and softmax normalizes um

j , indicating the
probability that the unit Uj is a boundary given the start
unit Um.

3.5 Model Training
We use “teacher forcing” [79] to train our model by supplying
the ground-truth start units to the decoder RNN. This
mechanism forces the RNNs to stay close to the ground-
truth start units and segment boundaries. The loss function
L is the negative log likelihood of boundary distribution
over the whole training set D, and can be written as:

L(ω) =
∑
D

M∑
m=1

− log p(ym|xm;ω) +
λ

2
||ω||22 (9)

where ω are the trainable parameters of the model (encoder,
decoder and pointer), and λ is the strength of L2 regulariza-
tion.

When using the RNN decoder for prediction on test
samples, the ground-truth boundaries are not available.
Similar to traditional seq2seq decoders in language models
[18], we feed in the input units based on the decoded symbol
at the previous step, e.g., we feed U4 after predicting a
boundary at U3 in Figure 4. Algorithm 1 summarizes the
learning process of SEGBOT.

Algorithm 1: Training the SEGBOT model.
Input: A set of sequences D with ground-truth

segmentation labels {y}.
Output: SEGBOT model: ω

1 Initialize all parameters ω randomly;
2 foreach epoch in epochmax do // iterate epoches
3 Sample a mini-batch from D;
4 Clear gradients dω ← 0;
5 Compute context encoder states by Eq. (1) – (4);
6 foreach m in M do // iterate decoder steps
7 Compute current decoder state by Eq. (6);
8 Compute current boundary distribution by Eq.

(7) – (8);
9 Retrieve input for next step m+ 1 ; // train:

teaching forcing, test: copy
boundary’s neighbor.

10 Compute batch L based on Eq. (9);
11 Update ω ← ω − ∂L

∂ω
· lr;

12 return model ω

4 SEGBOT-BASED SENTIMENT ANALYSIS

In this paper, we choose text sentiment analysis as a down-
stream application to demonstrate the benefit of the EDUs
produced by SEGBOT. In this Section, we introduce SEG-
BOT-based sentiment analysis in detail.

4.1 Model Architecture

Figure 5 illustrates the architecture of the proposed model
for sentiment analysis. Our key idea is based on the three
intuitions: 1) The overall sentiment of a sentence is derived
from different EDUs, each of which conveys a certain degree
of sentiment polarity. 2) The sentiment of an EDU is derived
from different words, each of which has a different contri-
bution. 3) We can employ both word-level and EDU-level
information simultaneously for sentiment polarity score
calculation. We resort to the attention mechanism [80] to
capture the most important clues for sentiment analysis. As
a result, our model can pay more attention to sentiment-
carrying words and EDUs. One merit of our model is that
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Fig. 5. The proposed hierarchical attention model for sentiment analysis.
Input sequence: {U0, U1, ..., U8}, consisting of three EDUs {e1, e2, e3}.
The transformer layer maps the input representation to contextual em-
beddings for each word. The word-level attention layer captures the most
important clues from words and forms EDU representations. The EDU-
level attention layer captures the most indicative EDUs and forms the
final sentiment polarity of U .

it can take advantage of both word-level and EDU-level
information simultaneously for sentiment analysis.

Our model is composed of four modules: the input
representation, transformer encoder, word-level attention
and EDU-level attention. Since it has two levels of attention,
therefore, we call it a hierarchical attention model. The input
representation module first represents the input sequence
U as a sequence of embedding vectors. The transformer en-
coder module uses a multi-layer bidirectional Transformer
[81] to capture the contextual information for each word.
Subsequently, the word-level attention module is used to
aggregate the representation of informative words to form
an EDU vector. Finally, the EDU-level attention module uses
an attention mechanism at the EDU level to capture the most
indicative sentiment EDUs and form the final sentiment
polarity of a sentence.

Input Representation. As shown in Figure 5, the input
U = (U1, U2, . . . , UN ) is a sequence of words of length
N . Following [81], the input representation is constructed
by summing the corresponding token and position embed-
dings. In particular, the token embeddings are from Word-
Piece embddings [82]. The position embeddings support a
sequence length up to 512 tokens.

Transformer Encoder. The Transformer [83] is a new simple
network based solely on an attention mechanism, dispens-
ing with complex recurrence and convolutions entirely. It
is superior in quality, while being more parallelizable and
requiring significantly less time to train. We use a multi-
layer bidirectional Transformer encoder to map the input
representation to the contextual embedding for each word.
Formally, let P = (p1,p2, . . . ,pN ) denote the sequence of
word representations derived by the transformer encoder,
where pn ∈ RV , V is the hidden size of the transformer
encoder.

Word-level Attention. With SEGBOT, we had detected
EDUs in the input sequence. Thus, U = (e1, e2, . . . , eL) is
a sequence of EDUs of length L. For each EDU, we argue
that not all words are equally important to the degree of

sentiment polarity. We employ an attention mechanism to
capture the most important clues for each EDU. Given an
EDU el consisting of Q words, we compute word-level
attention weights (αl,1, ..., αl,q, ..., αl,Q) and EDU embed-
dings f j

l as follows:

αl,q =
exp(GT · pl,q)∑Q
i=1 exp(G

T · pl,i)
(10)

f j
l =

V∑
j=1

αl,q · pj
l,q (11)

where G are the learnable parameters of the word-level
attention layer. f j

l is the j-th slot element of the EDU
embedding fl.

EDU-level Attention. After obtaining a representation fl

for every EDU, we can get individual EDU sentiment pre-
dictions via a softmax layer with a Multi-Layer Perceptron:

p(y|el) = softmax(MLP(fl)) (12)

where the parameters of softmax(MLP(·)) are shared across
all EDUs. To form the final sentiment polarity of U , a naive
method is to average p(y|el) across all EDUs. However,
we claim that not all EDUs are equally important. Thus,
we employ an EDU-level attention to capture the most
indicative EDUs, which are more important to the final sen-
timent polarity. We compute EDU-level attention weights
(β1, ..., βl, ..., βL) as follows:

βl =
exp(DT · fl)∑L
i=1 exp(D

T · fi)
(13)

where D are the learnable parameters of the EDU-level
attention layer. Finally, we obtain the sentence-level predic-
tions over sentiment labels by

p(y|U) =
L∑

l=1

βl · p(y|el) (14)

4.2 Model Training

The hierarchical attention model is trained in an end-to-end
way using sentence-level sentiment labels. The loss function
L is the negative log likelihood of the boundary distribution
over the whole training set D, and can be written as:

L(ξ) =
∑
D
− log p(y|U ; ξ) +

λ

2
||ξ||22 (15)

where ξ are the trainable parameters of the hierarchical
attention model, and λ is the strength of the L2 regular-
ization. Algorithm 2 summarizes the learning process of the
hierarchical attention model.

5 EXPERIMENT I: TEXT SEGMENTATION USING
SEGBOT

We conduct two sets of experiments to evaluate the effec-
tiveness of SEGBOT: segmenting a document into topically
coherent segments (topic segmentation), and segmenting a
sentence into EDUs (EDU segmentation).
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Algorithm 2: Training the hierarchical attention
model for sentiment analysis.

Input: A set of sequences D with ground-truth
sentence-level sentiment labels {y}.

Output: The hierarchical attention model : ξ
1 Initialize all parameters ξ randomly;
2 foreach epoch in epochmax do // iterate epoches
3 Sample a mini-batch from D;
4 Clear gradients dξ ← 0;
5 Compute input represntation;
6 Compute the hidden states P of Transformer

encoder;
7 foreach l in L do // iterate EDUs
8 Compute word-level attention weights by Eq.

(10);
9 Compute EDU representation fl by Eq. (11);

10 Compute p(y|el) by Eq. (12);
11 Compute EDU-leve attention weights by Eq.

(13);

12 Compute batch L based on Eq. (15);
13 Update ξ ← ξ − ∂L

∂ξ
· lr;

14 return model ξ

5.1 Experimental Settings

Choi Dataset. To evaluate topic segmentation models, we
utilize the commonly used Choi dataset [2]. It consists of
700 documents, each being a concatenation of 10 segments.
The corpus was generated by an automatic procedure. A
segment of a document is the first n (s.t. 3 ≤ n ≤ 11, 4
subsets in total) sentences of a randomly selected document
from the Brown corpus.

We use the error metric Pk [84], which is the most
common metric for evaluating topic segmentation models.
Using a sliding window of size k, Pk compares the inferred
segmentation with the gold-standard by:

Pk =
∑

1≤s≤t≤T

1(δtru(s, t) ̸= δhyp(s, t)) (16)

where a document consists of T sentences (s, t = 1, 2, ..., T ),
and δ() is equal to 1 when sentences s and t belong to the
same segment in the true/hypothetical segmentation and
0 otherwise. 1(a ̸= b) is the indicator function (equal to 1
when a = b and to 0 otherwise), and k is equal to half of the
document length divided by the number of gold segments.
Note that a lower Pk means a higher accuracy for topic
segmentation.

RST-DT Dataset. The Rhetorical Structure Theory Discourse
Treebank (RST-DT) [85] is a publicly available corpus, man-
ually annotated with EDU segmentation and discourse rela-
tions according to Rhetorical Structure Theory. The RST-DT
corpus is partitioned into a training set of 347 articles (6,132
sentences) and a test set of 38 articles (991 sentences), both
from the Wall Street Journal.

Following previous work [3], [15], we measure EDU
segmentation accuracy with respect to the sentence-internal
segmentation boundaries. That is, if a sentence has 3 EDUs,
which correspond to 2 inside-sentence discourse boundaries
and the end of the sentence, we measure the ability of our
model to correctly identify these 2 boundaries within the
sentence. Let g be the total number of sentence-internal

boundaries in the human annotation, h be the total number
of sentence-internal boundaries in the model output, and
c be the total number of correct boundaries in the model
output. Then, we measure Precision, Recall, and F-score for
segmentation performance as follows:

Precision =
c

h
, Recall =

c

g
, and F–score =

2c

g + h
(17)

Baselines. For topic segmentation, we compare SEGBOT
with 11 methods.

• TextTiling [1] is an unsupervised technique that makes
use of patterns of lexical co-occurrence and distribution
within texts.

• C99 [2] is a method for linear text segmentation, which
replaces inter-sentence similarity by rank in local con-
text.

• U00 [29] is a statistical model that finds the maximum-
probability segmentation of a given text, for domain-
independent text segmentation.

• ADDP [86] adapts a dynamic programming technique
to find the optimal topical boundaries.

• TSM [33] integrates a point-wise boundary sampling
algorithm into a structured topic model that can capture
a simple hierarchical topic structure latent in texts.

• GraphSeg [87] exploits a measure of semantic related-
ness of short texts to construct a semantic relatedness
graph of the document.

• TopSeg [30] is based on probabilistic latent semantic
analysis (PLSA) and exploits similarities in word mean-
ing detected by PLSA.

• F04 [88] uses a new segmentation cost function that
incorporates two factors: a) within-segment word simi-
larity and b) prior information about segment length.

• M09 [31] uses a Latent Dirichlet Allocation (LDA) topic
model to produce the topic distribution associated with
each segment.

• TopicTiling [32] modifies TextTiling with topic IDs,
obtained by an LDA model, instead of words.

• BiLSTM-CRF [21] is a state-of-the-art neural architec-
ture for sequence labeling.

For EDU segmentation, we compare SEGBOT with 6
methods.

• HILDA [15] uses Conditional Random Fields to train
a discourse segmenter on the RST Discourse Treebank,
using a set of lexical and syntactic features.

• SPADE [16] is a discourse segmenter that accounts for
both local interactions at the word level and for global
interactions at more abstract levels, using lexical and
syntactic features.

• F&R [17] uses different feature sets to perform EDU
segmentation within a general machine learning frame-
work, including wide range of finite-state and context-
free derived features.

• DS [3] implements a binary classifier to decide, for each
word (except the last) in a sentence, whether to place an
EDU boundary after that token. It achieves state-of-the-
art performance and reduces the time complexity by
using fewer features.

• BiLSTM-CRF [21] is a state-of-the-art neural architec-
ture for sequence labeling.
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TABLE 1
Hyper-parameter settings.

Parameters Choi RST-DT

Learning rate 0.001 0.01
Regularization 1e−4 1e−4

Dropout 0.5 0.2
GRU dimensionality 128 64
GRU depth 3 6
Batch size 20 80

TABLE 2
Segmentation results on Choi dataset. Significant improvement over

BiLSTM-CRF is marked with * ( p-value < 0.01).

Group Method Pk (%)

A

TextTiling [1] 45.25
C99 [2] 10.50
U00 [29] 7.75
ADDP [86] 5.68
TSM [33] 0.92
GraphSeg [87] 6.64

B

TopSeg [30] 8.22
F04 [88] 4.20
M09 [31] 2.72
SEGBOT (our model) 0.33

C
TopicTiling [32] 0.88
BiLSTM-CRF [21] 0.67
SEGBOT (our model) 0.11*

Implementation Details. For the Choi dataset, we split it
into training and test sets with the same proportions used
in previous studies (see Section 5.2). For the RST-DT dataset,
the training/test partition is provided. We use the first 10%
of shuffled training set as the development set for both the
Choi and RST-DT datasets.

We use the GloVe 300-dimensional pre-trained word
embeddings released by Stanford1, and the word vectors are
fixed without fine-tuning during training. We use the Adam
optimizer to update the model parameters. In addition,
we use gradient clipping by a max norm of 5 and l2 -
regularization during training. Table 1 provides details of
other hyper-parameter settings. SEGBOT is implemented
using the PyTorch framework and evaluated on NVIDIA
Tesla P100 GPUs.

5.2 Text Segmentation Results

Topic Segmentation. In Table 2, we report the performance
of SEGBOT and prominent methods on the Choi dataset.
Note that the methods in Group A involve no training set,
but still require certain hyper-parameters to be specified.
In Group B, the full dataset is split into 500 documents
for training and 200 documents for testing. In Group C,
the full dataset is split into 630 documents for training
and 70 for testing. For fair comparison, the data partition
of SEGBOT is consistent with these existing methods. We
also reimplement BiLSTM-CRF, which is the state-of-the-art
neural model for sequence labeling. Except for BiLSTM-CRF,
the Pk values of the baselines are obtained from published
results by averaging the 4 subsets (detailed in Section 5.1).

From the results, we make the following observations:
1) SEGBOT significantly outperforms all existing methods

to date.

1. http://nlp.stanford.edu/projects/glove/

TABLE 3
Segmentation results on RST-DT Dataset. Significant improvements

over BiLSTM-CRF are marked with * ( p-value < 0.01).

Method Precision Recall F-score

HILDA [15] 77.9 70.6 74.1
SPADE [16] 83.8 86.8 85.2
F&R [17] 91.3 89.7 90.5
DS [3] 88.0 92.3 90.1
BiLSTM-CRF [21] 89.1 87.8 88.5
SEGBOT (our model) 91.6* 92.8* 92.2*

2) The performance of unsupervised methods (in Group
A) is relatively poor as these methods do not utilize
training data to learn accurate models. TSM achieves
relatively high accuracy because it estimates parameters
from the whole corpus, not only the test data.

3) SEGBOT outperforms all topic-modeling-based ap-
proaches (TSM, TopSeg, M09, and TopicTiling). Specif-
ically, SEGBOT achieves an absolute Pk reduction of
87.5% over the state-of-the-art topic modeling method,
i.e., TopicTiling. One reason is that SEGBOT is based on
the distributed representations of words, which capture
more semantic information than the topic modeling
methods.

4) SEGBOT significantly outperforms the state-of-the-art
neural model (BiLSTM-CRF) with an absolute Pk re-
duction of 83.6% (p-value < 0.01). This result shows
that SEGBOT can effectively capture the dependencies
of input sentences when the boundaries are sparse.

Figure 6 shows an example of topic segmentation using
SEGBOT. The upper part of this figure illustrates the bound-
ary distribution. The x-axis shows gold boundaries while
the y-axis shows the boundaries predicted by SEGBOT. The
heat map indicates that SEGBOT can effectively partition
the document into ten topically coherent segments. We only
show details of S14-S25 in the lower part of the figure. The
predicted boundaries are highlighted in purple. Notice that
SEGBOT successfully identifies topic shifts (from “Utopia”
to “Oxidation ponds”, to “Polycrystalline Afj”).

EDU Segmentation. We compare SEGBOT with the six base-
lines described in Section 5.1. Specifically, we run HILDA
with its default settings. For SPADE, we apply the same
modifications to its default settings as described in [17],
which delivers a significant improvement over its original
version. We reimplement DS and BiLSTM-CRF in our exper-
iments. The F&R [17] segmenter is not publicly available, so
its performance is taken from the published results.

Table 3 reports the Precision, Recall and F-score, of SEG-
BOT and the six baseline systems. We make the following
observations from the results.

1) SEGBOT outperforms all baselines, in all measures. The
improvements over baselines range from 0.3% to 17.6%
in precision, 0.5%-31.4% in recall, and 1.8%-24.4% in F-
scores, respectively.

2) It is worth mentioning that SEGBOT does not require
any tedious feature engineering. Taking pre-trained
word embeddings as input, SEGBOT outperforms all
models that require carefully designed features, includ-
ing HILDA, SPADE, F&R and DS. Since SEGBOT does
not need any syntactic parser or tagger, it can easily
be transfered to other resource-poor languages and

http://nlp.stanford.edu/projects/glove/
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⇓ For the sake of space, we show three segments from S14∼ S25 for illustration: S14 −→ S16; S17 −→ S20; S21 −→ S25
S14⃝ Some who have written on Utopia have treated it as “a learned diversion of a learned world”,“a phantasy with which More amused himself”, “a holiday work , a
spontaneous overflow of intellectual high spirits , a revel of debate , paradox , comedy and invention”. S15⃝ With respect to this view, two points are worth making. S16⃝
First, it appears to be based on the fact that on its title page Utopia is described as “festivus”, “gay”. S17⃝ The Midwest , oxidation ponds are used extensively for the
treatment of domestic sewage from suburban areas. S18⃝ The high cost of land and a few operational problems resulting from excessive loadings have created the need
for a wastewater treatment system with the operational characteristics of the oxidation pond but with the ability to treat more organic matter per unit volume. S19⃝
Research at Fayette, Missouri on oxidation ponds has shown that the BOD in the treated effluent varied from 30 to 53 mg with loadings from 8 to 120 lb. S20⃝ Since
experience indicates that effluents from oxidation ponds do not create major problems at these BOD concentrations, the goal for the effluent quality of the accelerated
treatment system was the same as from conventional oxidation ponds. S21⃝ A proton magnetic resonance study of polycrystalline Afj as a function of magnetic field
and temperature is presented. S22⃝ Afj is paramagnetic, and electron paramagnetic dipole as well as nuclear dipole effects lead to line broadening. S23⃝ The lines are
asymmetric and over the range of field Afj gauss and temperature Afj the asymmetry increases with increasing Afj and decreasing T. S24⃝ The lines are asymmetric and
over the range of field Afj gauss and temperature Afj the asymmetry increases with increasing Afj and decreasing T. S25⃝ The general theory of resonance shifts is used
to derive a general expression for the second moment Afj of a polycrystalline paramagnetic sample and is specialized to Afj.

Fig. 6. Visualization of topic segmentation. The boundaries of topics are in purple. This document consists of 63 sentences. The upper part
illustrates the boundary distribution and the lower part shows segmentation of S14-S25, which consists of three topics: “Utopia” , “Oxidation ponds”,
and “Polycrystalline Afj".
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Fig. 7. Visualization of EDU segmentation. Given the decoder input
“Sheraton”, SEGBOT predicts its boundary at the position of “siad”. For
the input “they”, SEGBOT predicts the corresponding boundary at the
position of “law”. Finally, given “that”, “.” is predicted as the boundary.

domains.
3) BiLSTM-CRF takes the same input as our model, i.e.,

pre-trained word embeddings. SEGBOT beats BiLSTM-
CRF with an absolute F-score improvement of 4.2% (p-
value < 0.01).

Figure 7 gives an example of EDU segmentation by
SEGBOT. It segments the sentence “Sheraton and Pan Am
said they are assured under the Soviet joint-venture law that
they can repatriate profits from their hotel venture.” into three
EDUs, with boundaries “said”, “law” and “.”, respectively.
We observe that the identified boundaries have dominant
attention weights, which implies that SEGBOT can success-
fully learn sentence structure and syntax.

5.3 Model Analysis

Effect of Fine-tuning. Recall that SEGBOT takes the pre-
trained GloVe vectors as input. During the training pro-
cess, the word embeddings can also be fine-turned if we
make them as learnable parameters. Accordingly, only those
words appearing in our training data will have embeddings.
Table 4 reports the performance on the RST-DT dataset, with
and without fine-tuning the GloVe vectors. Observe that the
performance when using off-the-shelf GloVe vectors, i.e.,
without fine-tuning, is much better than when using fine-
tuned embeddings.

TABLE 4
Performance w.r.t. fine-tuning and fixed word embeddings.

Word Embeddings Precision Recall F-score

GloVe vectors with fine-tuning 87.5 88.4 87.9
GloVe vectors without fine-tuning 91.6 92.8 92.2
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Fig. 8. The venn diagram of the three vocabularies.

The main reason for this is that the fine-tuning mecha-
nism results in more out-of-vocabularies in the test data. Fig-
ure 8 illustrates the relationships among GloVe vocabulary,
training data vocabulary, and test data vocabulary. It shows
that GloVe vocabulary covers 96.5% of training vocabulary
and 98% of test vocabulary. With fine-tuning, only 76.6% of
test vocabulary appear in the training data (B∩C = 3, 489),
resulting in 1,066 (i.e., 4, 555 − 3, 489) “unknown” words.
In short, GloVe vocabulary covers more words in the test
data than the fine-tuned embeddings. On the other hand, the
higher performance of SEGBOT obtained on GloVe vocabu-
lary shows that our model effectively handles those words
that only appear in test data, i.e., out-of-training-vocabulary
words.

Effect of Pre-trained Word Embeddings. To test the impact
of pre-trained word embeddings, we conducted experi-
ments with two other sets of publicly available word em-
beddings, namely Google embeddings2, trained on 100 bil-
lion words from Google News, and FastText embeddings3,
trained on 600 billion words from Common Crawl. We also

2. https://code.google.com/archive/p/word2vec/
3. https://fasttext.cc/docs/en/english-vectors.html

https://code.google.com/archive/p/word2vec/
https://fasttext.cc/docs/en/english-vectors.html
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TABLE 5
Results of SEGBOT with different word embeddings on EDU

segmentation.

Word Embeddings Precision Recall F-score

Random initialization (300d) 85.8 85.5 85.6
Google embeddings (300d) 84.5 84.6 84.5
FastText embeddings (300d) 91.1 93.0 92.0
GloVe embeddings (300d) 91.6 92.8 92.2

S2 S5 S8 S12 S17 S21 S26 S29 S32 S35

Ground boundaries

S0   S2

S3   S5

S6   S8

S9   S12

S13   S17

S18   S21

S22   S26

 S27   S32

P
re

d
ic

te
d

 b
o

u
n

d
a

ri
e

s

0

0.5

1

(a) A mistakenly detected case in Choi dataset.
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(b) A mistakenly detected case in RST-DT dataset.

Fig. 9. Two error examples. The gold boundaries are in blue, and the
error boundaries are in red.

include random initialization as a reference. Table 5 reports
the performance of SEGBOT with the different word em-
beddings as input, on the RST-DT dataset for EDU segmen-
tation. Note that the word embeddings of Google, FastText
and GloVe are fixed without fine-tuning. The embeddings
with random initialization are learned during training.

The results show that Google embeddings deliver the
weakest performance. One possible reason is vocabulary
mismatch. Google embeddings exclude punctuation marks,
digits, and stopwords, which are extremely important for
EDU segmentation. FastText embeddings obtain a similar
performance to GloVe embeddings, as both are trained in a
case-sensitive manner, and include common symbols such
as punctuation marks, digits, and stopwords.

Error Analysis. In Figure 9, we show two error examples,
one for topic segmentation and the other for EDU segmenta-
tion. When the decoder RNNs reach sentence S27, SEGBOT
predicts a boundary at S32 and misses the gold boundary
S29. However, missing this gold boundary does not prevent
SEGBOT from correctly detecting the subsequent bound-
aries (S32 and S35).

For EDU segmentation, shown in Figure 9, there are 3
gold boundaries, in bold font: “Until Mr. Luzon took the helm
last November, Banco Exterior was run by politicians who lacked
either the skills or the will to introduce innovative changes.”.
SEGBOT wrongly predicts “skills” as a boundary. Again, this
wrongly predicted boundary does not prevent the correct
detection of “.” as the next boundary.

Fig. 10. The Web interface: http://138.197.118.157:8000/segbot/

5.4 Tool Support

We demonstrate the effectiveness of SEGBOT for discourse
segmentation by developing a concise web interface4, as
shown in Figure 10. The interface consists of two panels:
the input panel and the output panel.

The input panel takes sentences from users. Once a
user clicks the button labeled with a right arrow, the input
sentence is passed to the SEGBOT model, where each word
in the sentence is an input unit (e.g., U0 to U8 in Figure 4).

The output panel displays the segmentation results in
two forms. As shown in the output panel in Figure 10,
on the top is the color-coded sentence, where each EDU
is displayed in a different color. The color-coded sentence
presents EDUs in their context to facilitate easy interpre-
tation for the user. On the bottom of the output panel is
the list of segmented EDUs, as shown in Figure 10. The
order of the EDUs are determined by their positions in
the original sentence. The list of EDUs allows users to
consider individual EDUs and to pay more attention to their
boundaries.

SEGBOT allows all valid English sentences as input. In
our demonstration, we provide an example sentence for
users to begin with. The three elementary discourse units
are displayed in the output panel, as shown in Figure 10.
Clicking the reset button results in clearing the input panel
to take in the next sentence.

6 EXPERIMENT II: SEGBOT-BASED SENTIMENT
ANALYSIS

6.1 Experimental Settings

We conduct experiments on two benchmark datasets: Movie
Review and Stanford Sentiment Treebank.

Movie Review (MR) Dataset5. The MR dataset [89]
consists of 10,662 movie-review “snippets” (a striking
extract usually one sentence long) downloaded from
www.rottentomatoes.com; each snippet was annotated with
its source review’s label (positive or negative), as provided
by Rotten Tomatoes. There are 5,331 positive snippets and
5,331 negative snippets.

Stanford Sentiment Treebank (SST-5) Dataset6. The SST-5
dataset [90] is extracted from movie reviews, with human
annotations of their sentiment. It contains 215,154 phrases
with fine-grained sentiment labels in the parse trees of
11,855 sentences from movie reviews. This dataset was

4. An online version of SEGBOT (EDU segmentation) is available at
http://138.197.118.157:8000/segbot/

5. http://www.cs.cornell.edu/people/pabo/movie-review-data/
rt-polaritydata.tar.gz

6. https://nlp.stanford.edu/sentiment/index.html

http://138.197.118.157:8000/segbot/
http://138.197.118.157:8000/segbot/
http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz
http://www.cs.cornell.edu/people/pabo/movie-review-data/rt-polaritydata.tar.gz
https://nlp.stanford.edu/sentiment/index.html
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created specifically to evaluate more complex compositional
language models. There are five sentiment labels (very
negative, negative, neutral, positive, and very positive). Fol-
lowing [72], we only utilize the sentence-level annotations
and report results on sentence-level sentiment analysis.

Baselines. We compare our hierarchical attention model
with 12 baseline methods.

• RAE [27] learns a distribution over sentiment labels at
each node of the hierarchy, based on recursive autoen-
coders.

• RNTN [91] employs a syntactically untied recursive
tensor neural network that learns syntactico-semantic,
compositional vector representations.

• LSTM [70] is the classical long short-term memory.
• Bi-LSTM [71] represents bidirectional LSTM, which

learns bidirectional long-term dependencies.
• LR-LSTM [66] is a linguistically-regularized variant

of LSTM, regularizing the difference between the pre-
dicted sentiment distribution of the current position
and that of the previous or next positions.

• LR-Bi-LSTM [66] is a linguistically-regularized variant
of Bi-LSTM.

• Tree-LSTM [73] is a generalization of the standard
LSTM architecture to tree-structured network topolo-
gies.

• CNN [68] uses a convolutional neural network on top
of word vectors obtained from an unsupervised neural
language model.

• CNN-Tensor [69] extends the n-gram convolution to
non-consecutive words through a combination of low-
rank tensors and pattern weighting.

• DAN [92] is a deep averaging network, which feeds an
unweighted average of word vectors through multiple
hidden layers before classification.

• NCSL [93] utilizes the strength of semantic feature
learning of LSTM models to calculate a context-
dependent weight for each word of a given an input
sentence.

• RNN-Capsule [72] is a capsule model based on recur-
rent neural networks for sentiment analysis.

Implementation Details. For the MR dataset, we use the
training/dev/test partition provided by the previous work
[72]. For the SST-5 dataset, the standard data partition is
provided. We measure the accuracy at sentence level on both
datasets.

For the Transformer layer, we use the pre-trained BERT
model7. That is, the number of layers (i.e., Transformer
blocks) is 12; the number of self-attention heads is 12; and
the hidden size is 768. This results in 110M parameters in
the Transformer layer. As suggested in [81], the dropout
probability is always kept at 0.1. The batch size is 16 and
the learning rate is 3e − 5. We use the Adam optimizer to
update model parameters. The hierarchical attention model
is implemented using the PyTorch framework and evalu-
ated on NVIDIA Tesla P100 GPUs.

TABLE 6
Sentiment analysis results on Movie Review (MR) and Stanford

Sentiment Treebank (SST-5) datasets. Note that all models only use
sentence-level annotations, rather than phrase-level annotations in the

SST-5 dataset. Significant improvements over RNN-Capsule are
marked with * (p-value < 0.01).

Method MR dataset SST-5 dataset

RAE [27] 77.7 43.2
RNTN [91] 75.9 43.4
LSTM [70] 77.4 45.6
Bi-LSTM [71] 79.3 46.5
LR-LSTM [66] 81.5 48.2
LR-Bi-LSTM [66] 82.1 48.6
Tree-LSTM [73] 80.7 48.1
CNN [68] 81.5 46.9
CNN-Tensor [69] - 50.6
DAN [92] - 47.7
NCSL [93] 82.9 47.1
RNN-Capsule [72] 83.8 49.3
Our model 88.9* 53.3*

6.2 Sentiment Analysis Results
Table 6 reports the accuracy of different methods on the
MR and SST-5 datasets. We make the following observations
from the experimental results.

1) Our hierarchical attention model significantly outper-
forms all baseline methods on both the MR and SST-5
datasets. In particular, our model achieves relative accu-
racy improvements of 17.12% and 23.27% against the
RAE method on MR and SST-5 datasets, respectively.
Notably, our model significantly outperforms the sec-
ond best method (i.e., RNN-Capsule on the MR dataset
and CNN-Tensor on the SST-5 dataset) with relative
improvements of 6.08% and 5.33%, respectively.

2) LR-Bi-LSTM and NCSL achieve better accuracy than
other baseline methods on the MR dataset. However,
these two methods require linguistic knowledge, such
as intensity regularizer and sentiment lexicon. It is
worth reiterating that our approach does not require
any any tedious feature engineering except for the EDU
segmentation results of SEGBOT.

3) CNN-Tensor outperforms other baseline methods on
the SST-5 dataset. Unlike this method, our hierarchi-
cal attention model is based solely on an attention
mechanism, dispensing with complex recurrences and
convolutions entirely. Thus, it is superior in quality
while being more parallelizable.

4) The recent work RNN-Capsule [72], based on Capsule
networks [94], was the state-of-art method on the MR
dataset until now. Our model significantly outperforms
this method, achieving the new state-of-art perfor-
mance.

5) Different from all baseline methods, our model lever-
ages both word-level and EDU-level information si-
multaneously for sentiment polarity score calculation.
We attribute our improvements to the fact that our
hierarchical attention model can make full use of EDU-
level information, such as the inner properties of EDUs,
which cannot be fully encoded in word-level features.

As shown in Figure 5, our model is a hierarchical atten-
tion model consisting of word-level attention and EDU-level

7. https://github.com/huggingface/pytorch-pretrained-BERT

https://github.com/huggingface/pytorch-pretrained-BERT
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bad less Such incomprehensiblean mess that it feels like cinema 

than like being stuck in a dark pit having a nightmare about bad cinema . 

EDU2EDU1

EDU3 EDU4

(a) A sentence (negative) from the MR test dataset.

A 
EDU1

itemclassy who may have to 

but still has the chops and drive to show how it is . 

by a legend nothing left prove 

done 

EDU2

EDU3 EDU4

(b) A sentence (very positive) from the SST-5 test dataset.

Fig. 11. Visualization of word-level (red color) and EDU-level (blue
color) attention mechanisms. The depth of the color corresponds to the
importance of words/EDUs for sentiment polarity calculation.

attention. For better understanding, we visualize the two-
level attention weights with two examples in Figure 11. The
first example is from the MR test dataset. SEGBOT detects
four EDUs: [Such an incomprehensible mess]EDU1 [that it feels
less like bad cinema]EDU2 [than like being stuck in a dark pit]EDU3
[having a nightmare about bad cinema]EDU4. From Figure 11(a),
we observe that our hierarchical attention model captures
more important sentiment-carrying words such as “mess”,
“bad” and “stuck” and “nightmare” in EDUs. Meanwhile,
our model also pays more attention on the sentiment-
carrying EDU, such as “Such an incomprehensible mess”.

The second visualization example is shown in Figure
11(b). SEGBOT detects four EDUs: [A classy item by a
legend]EDU1 [who may have nothing left prove]EDU2 [but still has
the chops and drive]EDU3 [to show how it is done]EDU4. There
is little information about sentiment polarity in EDU 2, 3,
and 4. Our hierarchical attention model pays much more
attention to EDU1 and successfully classifies this sentence
as “very positive”.

6.3 Ablation Study
We study the impacts of various architectural decisions on
model performance. Table 7 reports an ablation analysis
conducted on the test sets of MR and SST-5. The model
variations are deviated from the standard model (i.e., the
full architecture in Figure 5). The ablation study is based on
6 different variations, with the aims of clearly showcasing
the importance of each component. In (1), we replace the
Transformer with an RNN. In (2), we remove the word-
level attention mechanism only. In (3), we remove the EDU-
level attention mechanism only. In (4), we remove both the
word-level and EDU-level attention mechanism, and detect
sentence sentiment polarity using the representations of the
first and last words. In (5), we detect sentence sentiment
polarity using the average representation of the output of
the Transformer layer. In (6), we detect sentence sentiment
polarity using the average representation of the output of
the word-level attention layer.

First, we observe that the full architecture is the best
model configuration across the MR and SST-5 datasets.
We attribute this to the fact that our model relies on the
Transformer encoder and the hierarchical attention mech-
anism when modeling sentence sentiment polarity. Second,
there is a sharp drop in performance when we replace the
Transformer encoder with an RNN encoder. This observa-
tion ascertains the effectiveness of the Transformer encoder

TABLE 7
Ablation analysis on the MR and SST-5 datasets.

Ablation MR dataset SST-5 dataset

(1) Replace Transformer with RNN 81.2 47.3
(2) w/o word-level attention 85.7 50.8
(3) w/o EDU-level attention 86.4 51.3
(4) w/o two-level attentions 84.9 50.5
(5) Average words 84.2 49.6
(6) Average EDUs 86.9 51.1
Full architecture 88.9 53.3

for capturing contextual dependency. Third, the impact of
removing the hierarchical attention mechanism (see (2), (3)
and (4)) is quite noticeable, leading to a huge degrada-
tion in performance on the two datasets. In particular, the
model configuration (2) obtains a lower performance than
(3), which implies that the word-level attention is more
important in our architecture. Finally, the simple heuristics
(i.e., averaging word/EDU representations) also lead to
performance degradation, which signifies that modeling at
word-level and EDU-level simultaneously is essential.

7 CONCLUSION

In this paper, we proposed SEGBOT, an end-to-end neural
model for text segmentation at different levels of granular-
ity. SEGBOT does not require hand-crafted features or any
prior knowledge of the given texts. Our model effectively
addresses the sparsity of boundary tags in text segmenta-
tion. More importantly, compared with existing neural mod-
els, SEGBOT has the key advantage of inherently handling
variable size output vocabulary. To evaluate the effective-
ness of SEGBOT, we conducted two sets of experiments:
document-level topic segmentation and sentence-level EDU
segmentation tasks, respectively. Experimental results show
that SEGBOT significantly outperforms existing state-of-the-
art solutions on both tasks.

EDU segmentation helps to preserve the semantic mean-
ing of sentences, which subsequently benefits many down-
stream applications, e.g., sentiment analysis. As such, we
proposed a hierarchical attention model to make full use
of both word-level and EDU-level information simultane-
ously for sentence-level sentiment analysis. As a result,
our hierarchical model pay more attention to sentiment-
carrying words and EDUs. Experimental results show that
our hierarchical model achieves new state-of-the-art results
on the Movie Review and Stanford Sentiment Treebank
benchmarks.
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