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ABSTRACT
With the increasing popularity of location-aware social media ser-

vices, next-Point-of-Interest (POI) recommendation has gained sig-

nificant research interest. The key challenge of next-POI recom-

mendation is to precisely learn users’ sequential movements from

sparse check-in data. To this end, various embedding methods have

been proposed to learn the representations of check-in data in the

Euclidean space. However, their ability to learn complex patterns,

especially hierarchical structures, is limited by the dimensionality

of the Euclidean space. To this end, we propose a new research

direction that aims to learn the representations of check-in activi-

ties in a hyperbolic space, which yields two advantages. First, it can

effectively capture the underlying hierarchical structures, which

are implied by the power-law distributions of user movements.

Second, it provides high representative strength and enables the

check-in data to be effectively represented in a low-dimensional

space. Specifically, to solve the next-POI recommendation task, we

propose a novel hyperbolic metric embedding (HME) model, which

projects the check-in data into a hyperbolic space. The HME jointly

captures sequential transition, user preference, category and region

information in a unified approach by learning embeddings in a

shared hyperbolic space. To the best of our knowledge, this is the

first study to explore a non-Euclidean embedding model for next-

POI recommendation. We conduct extensive experiments on three

check-in datasets to demonstrate the superiority of our hyperbolic

embedding approach over the state-of-the-art next-POI recommen-

dation algorithms. Moreover, we conduct experiments on another

four online transaction datasets for next-item recommendation to

further demonstrate the generality of our proposed model.
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1 INTRODUCTION
Recent years have witnessed the rapid growth of location-based

social networks (LBSNs), such as Foursquare. In LBSNs, users share

their locations by checking-in at Points-of-Interest (POIs). With the

increasing availability of check-in data, POI recommendation (e.g.,

[19, 21, 46, 48]) has been extensively investigated, helping users

to better explore their surroundings and find interesting locations

based on their preferences. Among various types of POI recommen-

dation tasks, next-POI recommendation [7, 11] is one of the most

popular recommendation problems, which aims to suggest POIs for

a user to visit over the next few hours based on the current location

of the user.

The key challenge of next-POI recommendation is to effectively

model the personalized sequential transitions from the sparse check-

in data. To solve this task, various latent representation models

have been proposed by exploiting factorized Markov Chain [7, 53],

metric embedding [11, 47], or word2vec-based techniques [10, 27,

55, 56]. However, all of them utilize representation models in the

Euclidean space to learn the proximity of different items. Although

these Euclidean representation models have proved successful for

the next-POI recommendation task, they suffer from one inherent

limitation: their capability of learning complex patterns is limited

by the dimensionality of the Euclidean space [31].

To better understand user sequential movement patterns, we ex-

amine two fundamental relations: POI-POI relation (i.e., sequential

transition) and POI-user relation (i.e., individual preference). We

find that they follow power-law distributions: a majority of nodes
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have very few connections, and a few nodes have a huge number of

connections. It has been studied that power-law distributions often

indicate implicit hierarchical structures [1, 31, 34], which can

explain many topological properties of graphs [8]. In fact, although

there is no clearly defined tree structure, many real world informa-

tion networks exhibit underlying tree-like structures [1]. Moreover,

POIs are often associated with region and category tree informa-

tion, which intuitively indicate explicit hierarchical structures,
such as category taxonomy [26] and region hierarchy [10]. These

observations motivate us to investigate a specific question: how

can we effectively capture the underlying hierarchical structures in

user check-in activities?

Recently, hyperbolic representation methods [9, 31, 32] have

been developed to model latent hierarchical structures. Inspired

by these, we propose to learn latent representations of user move-

ments in a hyperbolic space rather than the conventional Euclidean

space. Overall, the hyperbolic space is a better choice than the

Euclidean space due to its exponential expansion property [18].

Specifically, there are two main advantages of the hyperbolic space.

First, it can effectively capture the tree structures, as a tree can

be approximately viewed as a discrete version of the hyperbolic

space [18]. This is because the number of children in a tree structure

expands exponentially with the distance to the root, and the hyper-

bolic space also expands exponentially with the radius. Second, it

is capable of modeling complex data in a lower-dimensional space,

because the hyperbolic space expands exponentially with radius,

while the Euclidean space only grows polynomially [31].

We develop a novel hyperbolic metric embedding (HME) ap-

proach for the next-POI recommendation task. The basic idea is to

represent items with the Poincaré ball model, which is commonly

used to describe the hyperbolic space and can be easily visual-

ized [31]. The distance in the Poincaré ball model is used to reflect

the relation between items. As the next-POI recommendation is an

implicit feedback recommendation task [36], we exploit a Bayesian

ranking approach, such that related items could be closer together

than unrelated items. In addition, since user’s mobility is influenced

by multiple factors, we jointly learn four different relationships

(POI-POI, POI-User, POI-Category and POI-Region) by projecting

them in a shared hyperbolic space.

The learned hyperbolic representations are then exploited for

next-POI recommendation. One key challenge is to integrate the

effect of user preferences and sequential transitions. However, due

to the hyperbolic geometry, we cannot directly apply the linear

interpolation as in the Euclidean space. Therefore, we develop

an Einstein midpoint aggregation method to combine the user

preferences and POI sequential transitions in the Poincaré ball

model. The geographical distance is also considered since users are

inclined to visit POIs that are close to their current positions [11].

The main contributions of this paper are summarized as follows:

• We observe that user movements exhibit power-law distri-

butions, which indicate the implicit hierarchical structures.

Motivated by this observation, we propose a novel research

problem of representing the users’ check-in activities in a

low-dimensional hyperbolic space. To the best of our knowl-

edge, this is the first study to utilize the hyperbolic space for

POI recommendation tasks.

• Wedevelop a hyperbolic metric embedding approach to learn

latent representations within the Poincaré ball model. We

jointlymodel the POI sequential transitions, user preferences,

regional and categorical information in a unified way. When

making a recommendation with the learned hyperbolic rep-

resentations, we design an Einstein midpoint aggregation

method to combine the effect of sequential transitions and

user preferences.

• We conduct extensive experiments on three real-world check-

in datasets, which demonstrate the significant improvement

of the hyperbolic metric embedding against the conventional

Euclidean-based embedding methods. In particular, HME in

10-dimensionality is able to outperform all the baselines by

more than 120%, which shows the strength of hyperbolic

representations in lower-dimensional spaces.

• We conduct next-item recommendation experiments on an-

other four online transaction datasets to further demonstrate

the generality of our proposed method. The results show

that our HME is not specific for next-POI recommendation

and can also be applied to other domains.

2 RELATEDWORK
2.1 Next-POI Recommendation
POI recommendation problems have been extensively studied [6,

19, 21, 23, 40, 49, 54], in which the main objective is to model user

preferences and geographical influences. Among the various types

of problems, next-POI recommendation, which additionally exploits

sequential transitions between POIs, has recently attracted signif-

icant attention, and various methods have been proposed. Some

studies directly utilize the Markov Chain [50] or Hidden Markov

Chain model [45] to model sequential movements. However, most

proposed methods exploit latent representation models to learn the

personalized sequential movements. For instance, the factorized

Markov chain [36] has been exploited to model the personalized

POI transitions [7, 15, 22, 53], and the metric embedding [11, 47]

has been used to model the user preferences and POI transitions.

Recently, the word2vec technique [30] has also been explored for

next-POI recommendation: some studies [10, 29] first build a tree

structure and then exploit the hierarchical softmax [30] to learn the

embeddings of different items; other studies [5, 27, 33, 43, 55, 56]

utilize the negative sampling strategy [30] to jointly learn the em-

beddings of POIs as well as other factors. However, all of these

methods are designed for Euclidean spaces. Therefore, they cannot

effectively model the latent hierarchical structures of user mobility

as discussed in Introduction. Different from conventional Euclidean

representation models, we propose a hyperbolic representation

model to learn the representations of user check-in activities in a

non-Euclidean space.

A variant of next-POI recommendation problem is also consid-

ered, where a sequence of historical POIs are available for recom-

mending the next POI. For the variant problem, recurrent neural

network (RNN) methods have been utilized to model check-in tra-

jectories [2, 20, 25, 52]. Since RNN models capture a sequence of

check-ins through hidden states, they are not designed to model

first-order relationships between POIs. Additionally, the RNN mod-

els require a sequence of denser check-ins to capture higher-order
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dependencies. In our problem setting, only the current POI is avail-

able, but not the previous POI trajectory. In other words, we only

consider first-order sequential transitions, and thus these RNN-

based methods cannot be used.

2.2 Next-Item Recommendation
The embedding models are not only utilized in next-POI recom-

mendation, but also adopted in various next-item recommendation

tasks. Rendle et al. [36] propose the factorized personalized Markov

Chain for next-basket products recommendation. Wang et al. [41]
propose a hierarchical representation model for next-product rec-

ommendation by applying different aggregation operations. He

et al. [16] develop a translation based recommendation method

for modeling sequential behaviors. Similar to the next-POI rec-

ommendation task, most of the existing solutions for next-item

recommendation are based on Euclidean spaces. In this work, we

also explore the feasibility of using the hyperbolic representations

for next-item recommendation and empirically compare with the

state-of-the-art methods. We are aware of the recent convolutional

neural networks [37] and self-attentive methods [51], which are

developed for a variant of next-item recommendation, where there

exist a sequence of previous items. Hence, these methods cannot

be directly used for the next-item recommendation problem we

consider in this work.

2.3 Hyperbolic Embedding
An increasing number of studies have shown that many types

of data exhibit non-Euclidean structures [3]. Recently, hyperbolic

embedding approaches have been proposed to learn the latent

representation of complex networks, especially hierarchical net-

works [9, 31, 32, 42]. In fact, hyperbolic geometry has been inte-

grated into recent advanced deep learning frameworks such as the

recurrent neural network [12], attention network [13], and graph

neural network [24]. The hyperbolic space has also been investi-

gated in recommender systems [4, 39], demonstrating the viability

of hyperbolic geometry in capturing individual preferences. Dif-

ferent from the two studies for the traditional recommendation

problem, we jointly learn multiple factors for the next-POI rec-

ommendation, such as sequential transitions and user preferences,

which is more challenging.

3 PRELIMINARY ANALYSIS
In this section, we first describe some important factors in user

check-in activities. Then we examine the properties of these factors.

Based on real world check-in data, we observe that they all exhibit

underlying hierarchical structures, which motivates us to explore

hyperbolic spaces to model user movements.

3.1 Data Description
In LBSNs, users share their locations by checking-in at POIs. We

denote the set of users byU and the set of POIs as L. Each check-

in < u, l , t > denotes that user u visited POI l at time t . Each
POI l is associated with a geographical coordinate: latitude and

longitude. Based on the coordinate of each POI, we can obtain the

regional information. Each POI also has categorical information,

e.g., restaurant or library. The set of regions is denoted by R and

set of categories is denoted by C.

Notably, human movement patterns are very complex and vari-

ous factors have been studied in POI recommendation tasks [28].

In this work, we mainly consider the following four factors, which

have been shown effective in next-POI recommendation [10, 11, 29].

POI-POI Relation. Users’ check-in behaviors exhibit strong se-

quential patterns [7]. For example, if a user is having dinner at a

restaurant, he would possibly go to a cinema after that. Following

previous studies [10, 11], if the time interval between two con-

secutive check-ins li and lj of a user is smaller than τ = 6 hours,

a POI-POI edge < li , lj > exists. These extracted POI-POI edges

reflect the sequential patterns of user movements.

POI-User Relation. As different users may have different prefer-

ences, personalized interests play an important role in check-in

behaviors [46, 48]. If a user u has visited a POI l , there is a POI-User
< l ,u > edge.

POI-Region Relation. Each POI is associated with latitude and

longitude information, which reflects the geographical information.

If a POI l is located in a region r (we will discuss how to define

regions later), there exists an edge < l , r > between them. POIs in

the same region may have strong relations as users are more likely

to visit nearby places [7, 10].

POI-Category Relation. POIs are commonly labeled with cate-

gories that specify their types and functions. If a POI l is associated
with a category c , there is a POI-Category edge < l , c >. Intuitively,
POIs in a same category share similar intrinsic features. Addition-

ally, categories are also beneficial for predicting next POIs [14].

The difficulty of modeling check-in behaviors lies in effectively

learning all these factors. To better understand user mobility pat-

terns, we examine characteristics of these factors.

3.2 Observation
We investigate properties of user movements on real-world datasets:

NYC and Tokyo datasets contain Foursquare check-ins within New
York City and Tokyo [44], and Houston dataset contains Gowalla
check-ins within Houston [26]. Details of these datasets are pre-

sented in Section 6.

To study the sequential transition factor, we show the distribu-

tions of POI-POI relations on the NYC and Tokyo datasets in Fig-

ure 1. As can be seen, POI-POI transition pairs follow a power-law

distribution. Some POIs are more likely to be involved in sequential

transitions with other POIs, while most POIs are only connected to

a small number of POIs. A similar distribution is also observed on

the Houston dataset and not presented here.

To investigate the user preference factor, we present the distri-

bution of frequency of check-ins for users and POIs in Figure 2. As

shown in Figure 2(a), some POIs attract many users while the ma-

jority of POIs are only visited by a small number of users. Similarly,

Figure 2(b) shows that a small portion of users have many check-

ins while most of users only have a few check-ins. The check-in

activities of POIs and users both follow the power-law distribution,

which is consistent with the results reported in [33].
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Figure 1: Distributions of POI-POI relations on NYC and
Tokyo. The X-axis presents the POIs’ number of POI-POI
transitions and the Y-axis shows the count of such POIs.
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(b) Distribution of user’s check-ins

Figure 2: Distributions of the frequency of check-ins for
users and POIs. The X-axis presents the number of check-
ins associated with a POI or user, and the Y-axis shows the
count of such POIs or users.

Since power-law distributions often suggest underlying hierar-

chical structures [31, 34], we claim that the check-in data exhibits

implicit hierarchical structures, which also widely exist in various

real world information networks [1].

In addition to implicit hierarchical structures, the POIs may also

exhibit some explicit hierarchical structures, such as the category

taxonomy [26] and region hierarchy [10, 29]. The three check-in

datasets used in this work contain the categories of POIs, which

can be intuitively organized in a category tree. Based on the ge-

ographical coordinates, POIs can also be hierarchically split into

different regions. Following [10], we recursively divide the whole

geographical space into sub-regions. In this way, a region tree is

constructed. Based on the category tree and region tree, we can

obtain POI-Category relations and POI-Region relations that reflect

the explicit hierarchical structures.

We investigate four kinds of relations: POI-POI, POI-User, POI-

Region, and POI-Category. We find that they exhibit either implicit

or explicit hierarchical structures. These common characteristics

motivate us to study how to effectively capture the hierarchical

structures in user mobility.

3.3 Discussion
To learn the representations of user check-in activities, various

latent representation models have been proposed. They exploit

factorized Markov Chain [7, 53], metric embedding [11, 47], or

word2vec-based techniques [10, 27, 55, 56]. All of them utilize rep-

resentation models in Euclidean spaces to learn the proximity of

different items.

Although Euclidean representation models have proved success-

ful for the POI recommendation task, they suffer from one inherent

limitation. Their capability of leaning complex patterns, especially

latent hierarchical structures, is limited by the dimensionality of

the embedding space [31]. To this end, we propose to learn rep-

resentations in a hyperbolic space. Hyperbolic spaces are spaces

of constant negative curvature, while Euclidean spaces have zero

curvature. Therefore, hyperbolic spaces exhibit an exponential ex-

pansion property [18], which leads to two additional advantages.

First, it can effectively model hierarchical structures [31]. Second, it

enables complex data to be modeled with small dimensionality, thus

reducing the number of parameters in the representation model.

4 PROBLEM STATEMENT
Based on the above observations and analysis, we propose a novel

research problem. To overcome the limitations of conventional

Euclidean representation methods, we attempt to model check-in

activities in a hyperbolic space. The problem is formulated below.

Definition 1. (Hyperbolic Representation of User Mobility)
Given 1) four types of nodes: POI set L, user setU, region set R, and
category set C; and 2) four types of relations: POI-POI edge set ELL ,
POI-user edge set ELU , POI-region edge set ELR , and POI-category
edge set ELL ; we aim at learning the representation of each node v in
a d-dimensional hyperbolic space: x(v) ∈ Rd .

To the best of our knowledge, this is the first study to represent

check-in data in the hyperbolic space. With the latent representa-

tions of different items, we can solve the next-POI recommendation

task. Given a user and his current location, we aim at recommend-

ing a set of new POIs to visit in the next few hours. Following

previous studies [7, 11], we formally define the research task below.

Definition 2. (Next-POI Recommendation Task) Given the
current check-in < u, lc , t > of a user u, and the set of POIs that user
u has visited Lu , the next-POI recommendation task is to recommend
a set of unvisited POIs Lu,l

c
= {l ∈ L \ Lu } for user u to visit in

the time period [t , t + τ ].

Here, τ is the time interval and commonly set to 6 hours [11].

Note that in this work, we only utilize the first-order sequential

transitions by following [11, 47].

5 HYPERBOLIC REPRESENTATIONS FOR
NEXT-POI RECOMMENDATION

In this section, we first introduce the proposed hyperbolic metric

embedding. Then we present a method to exploit the learned repre-

sentations for making personalized next-POI recommendation.

5.1 Hyperbolic Metric Embedding
To describe the hyperbolic space, there are several commonly used

models, such as the Poincaré model, Klein model, and hyperboloid

model [13]. These models can be converted into each others. We

use the Poincaré ball model, which can be better visualized [31].

The basic idea of our hyperbolic metric embedding (HME) is to

represent items with the Poincaré ball model, such that the related

items are close to each other.

5.1.1 Optimization Criterion. The Poincaré ball Bd = {x ∈ Rd :

∥x∥ < 1} describes a hyperbolic space, in which the points are in a

d-dimensional unit ball. Here ∥ · ∥ denotes the Euclidean norm. To
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learn the latent representations of nodes, we exploit the distances

in the Poincaré ball model to measure their proximity. Given an

edge < a,b >, the representations xa and xb in the Poincaré ball

should be close to each other. Different from the intuitive Euclidean

distance, the distance in the Poincaré ball is stated as follows:

Dab = arcosh

(
1 + 2

| |xa − xb | |2

(1 − | |xa | |2)(1 − | |xb | |2)

)
, (1)

where arcosh(x) = ln(x +
√
x2 − 1) is an inverse hyperbolic cosine

function. One interesting feature is that the distance varies with

the location of xa and xb . For example, when xa and xb are near to

the boundary of the ball, i.e. (1− ∥xa ∥2) → 0 and (1− ∥xb ∥2) → 0,

their distance is much larger than when they are near to the center

of the ball. As the next-POI recommendation is an implicit feedback

recommendation task [36], we utilize the Bayesian personalized

ranking (BPR) method [35] to learn the likelihood of training pairs.

For each given positive pair < a,b >, we randomly sample a small

number k of negative nodes, each denoted by n, following the

negative sampling strategy in [30]. The node b is supposed to be

ranked higher than the negative node n, which can be reflected by

a ranking probability P(b > n |a). By utilizing the distance in the

hyperbolic space, the ranking probability can be written as:

P (b > n |a) = σ (Dan − Dab ), (2)

where σ (z) = 1

1+e−z is a logistic function, and Dan is the distance

between xa and xn in the Poincaré ball model. Equation (2) reflects

the intuition that the distance between a negative pair should be

larger than the distance between a positive pair Dan > Dab .

By maximizing the log-likelihood, the optimization criterion of

the HME model can be derived as:

Θ = argmax

Θ

∑
(a,b)∈E

∑
n∈Nab

log P (b > n |a)

= argmax

Θ

∑
(a,b)∈E

∑
n∈Nab

logσ (Dan − Dab ).
(3)

Here Nab is the negative nodes sampled for each pair < a,b >
in the training dataset; and Θ is the hyperbolic representations of

node setV . In this paper, we set k = |Nab | = 5.

5.1.2 Learning Procedure. Different from Euclidean embedding

methods, we cannot directly use the Stochastic Gradient Descent

(SGD) due to the Riemannian manifold structure of the Poincaré

ball. Following [31], we first calculate Euclidean gradients and then

combine them with the Riemannian gradient to update parameters.

For each ranking pair (b > n |a), we use E to denote the log-

likelihood E = loд(σ (Dan − Dab )). We calculate the Euclidean

derivatives for variables as follows:

∂E
∂xa

= (1 − σ (Dan − Dab ))(
∂Dan

∂xa
−

∂Dab

∂xa
)

∂E
∂xn

= (1 − σ (Dan − Dab ))(
∂Dan

∂xn
)

∂E
∂xb

= (1 − σ (Dan − Dab ))(−
∂Dab

∂xb
).

(4)

The corresponding gradients can be further derived as follows:

∂Dab

∂xa
=

4

βv
√
γ 2

ab − 1

(
| |xb | |2 − 2 < xa, xb > +1

α 2
xa −

xb
α

)
∂Dab

∂xb
=

4

α
√
γ 2

ab − 1

(
| |xa | |2 − 2 < xa, xb > +1

β 2

b

xb −
xa
βb

)
∂Dan

∂xa
=

4

βn
√
γ 2

an − 1

(
| |xn | |2 − 2 < xa, xn > +1

α 2
xa −

xn
α

)
∂Dan

∂xn
=

4

α
√
γ 2

an − 1

(
| |xa | |2 − 2 < xa, xn > +1

β 2

n
xn −

xa
βn

)
,

(5)

where α = 1 − ||xa | |2, βb = 1 − ||xb | |2, βn = 1 − ||xn | |2, γab =
1 + 2

α βb
| |xa − xb | |2 and γan = 1 + 2

α βn
| |xa − xn | |2.

Combining with the Riemannian gradient [31], we obtain the

update procedure for the variables as:

xt+1a ← norm
(
xta + lr

(1 − | |xta | |2)2

4

∂E
∂xa

)
xt+1b ← norm

(
xtb + lr

(1 − | |xtb | |
2)2

4

∂E
∂xb

)
xt+1n ← norm

(
xtn + lr

(1 − | |xtn | |2)2

4

∂E
∂xn

)
,

(6)

where lr is the learning rate, xt is the embedding x at iteration t ;
andnorm(·) is a normalization function to constrain representations

in the Poincaré unit ball:

norm(x) =
{
x/ | |x | | − ϵ, if | |x | | ≥ 1

x, otherwise.
(7)

Here ϵ = 10
−5

is a small value to make sure that embeddings are

always within the Poincaré ball.

In this paper, the four bipartite relations, i.e., POI-POI, POI-User,

POI-Region, and POI-Category, can be jointly learned with the

proposed hyperbolic metric embedding method. We learn the rep-

resentations of all nodes in the same Poincaré ball.

The time complexity of the HME algorithm is O(I · k · d · |E |),
where I is the number of iterations, k is the number of negative

samples for each edge, d is the number of dimensions, and |E | is

the number of edges extracted from a given check-in dataset.

5.2 Recommending with Hyperbolic
Embeddings

With the learned hyperbolic embeddings of users and POIs, we can

provide personalized POI recommendations for a user to visit in

the next few hours. Given a user u and current location lc , we need
to calculate a list of POIs that are closely related to the query (u, lc ),
i.e., those POIs with the shortest distances to the query.

Since both user preferences and sequential transitions are im-

portant for next-POI recommendation [7, 11], we need to combine

these two factors by computing the aggregation of u and lc . In
conventional Euclidean methods, we can easily get the linear in-

terpolation of these points as: x = w · xu + (1 − w) · xlc , where
w ∈ [0, 1] controls the weight of different embeddings. However,

due to the hyperbolic geometry, we cannot simply apply the linear

interpolation of two points in the Poincaré ball model.

Therefore, it is necessary to design a new way to calculate

the aggregation. We resort to the Einstein midpoint aggrega-
tion [13, 38] in the Klein model, since it exhibits a weighted average

manner and thus provides an efficient aggregation operation. Note
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that the Poincaré model and the Klein model describe the same

hyperbolic space using different coordinates. Thus, we first convert

Poincaré ball coordinates to Klein coordinates, and then calculate

the aggregated point. After that, we transfer the Klein coordinates

back to the Poincaré ball model.

Given two d-dimensional embeddings xu ∈ Bd and xlc ∈ B
d

in the Poincaré ball model, we convert them to the Klein model by

conducting the following transformation:

xKu =
2 · xu

1 + | |xu | |2
, xKlc =

2 · xlc
1 + | |xlc | |2

. (8)

Here, xKu ∈ Rd and xKlc ∈ R
d
are the corresponding points in the

d-dimensional Klein model. The Einstein midpoint aggregation xKaд
is then calculated as:

xKaд =
w ·ψu

w ·ψu + (1 −w ) ·ψlc
· xKu +

(1 −w ) ·ψlc
w ·ψu + (1 −w ) ·ψlc

· xKlc , (9)

whereψu =
1√

1−| |xKu | |2
andψlc =

1√
1−| |xKlc | |

2

are Lorentz factors of

xKu and xKlc ; andw ∈ [0, 1] denotes the component weight.

Finally, the d-dimensional aggregated point xKaд in the Klein

model can be converted into the Poincaré ball model as:

xaд =
xKaд

1 +

√
1 − | |xKaд | |2

. (10)

With this Einstein midpoint aggregation method, we obtain

the aggregated point xaд of the given query (u, lc ). For each POI

candidate l , we calculate the distance Dl,aд between xl and xaд
using Equation (1). In addition, the geographical distance can be

accommodated, which has been demonstrated beneficial for next-

POI recommendation. For a fair comparison, we exploit the same

strategy as [11]. Specifically, we compute the fused distance score

DGeo
l,aд = (1 + dl,lc )

0.25 ∗ Dl,aд, (11)

where dl,lc is the distance calculated by the geographical coordi-

nates of POI l and current POI lc . By sorting the fused distance

scores DGeo
l,aд of POI candidates, a list of POIs with the smallest

fused distance scores are returned as the recommendation result.

6 EXPERIMENTS
6.1 Experimental Settings
We evaluate the performance of our hyperbolic metric embedding

model on three research tasks:

• RT1: Sequential Transition. Given a location, we predict

the most likely successive locations. This task is to evaluate

the quality of capturing POI sequential transitions. Here, we

only consider POI-POI relations.

• RT2:Next-POIRecommendation. Given a user and his/her
current location, we suggest a list of POIs for the user to

check-in next.

• RT3:Next-ItemRecommendation. AlthoughHME is pro-

posed for next-POI recommendation, it can be applied to

other domains. To demonstrate the generality of the pro-

posed HME model, we evaluate the empirical results on the

next-item recommendation task, where we recommend prod-

ucts for a user to purchase next based on the last item that

the user purchased.

For the first two research tasks, i.e., RT1 and RT2, we use three
publicly available real-world check-in datasets: NYC and Tokyo
from the Foursquare check-in dataset [44], and Houston from the

Gowalla check-in dataset [26]. The basic statistics of these datasets

are summarized in Table 1.

Dataset Platform #User #POI #Check-ins

NYC Foursquare 1,083 9,989 227,428

Tokyo Foursquare 2,293 15,177 573,703

Houston Gowalla 4,627 15,135 362,783

Table 1: Statistics of the three check-in datasets

Our model is able to incorporate POI categories and regions. All

the check-in datasets contain category taxonomy information, and

the categories in the top-two levels of the category taxonomy are

considered. In total, there are 209 categories in the NYC dataset, 206

categories in the Tokyo dataset, and 140 categories in the Houston

dataset. We recursively divide the whole region into four equal size

sub-regions until the depth reaches 4. Each POI is associated with all

the sub-regions (including the leaf sub-region and its antecedents)

that cover the POI.

For the last research task, i.e.,RT3, we use theAmazon datasets [17].

Four sub-categories are chosen with diverse domains and densi-

ties:APP (Apps for Android),Music (Digital Music),Game (Video
Games), and Health (Health and Personal Care). Each transaction

is a tuple of < user,item,time >. Following [51], for each dataset,

we remove the users and items with less than 10 transactions. The

statistics of the datasets are reported in Table 2.

Dataset #User #Item #Transactions

APP 22,693 14,542 357,150

Health 16,181 36,194 242,776

Game 8,055 15,718 141,608

Music 5,729 9,267 65,344

Table 2: Statistics of the four online transaction datasets

For each dataset, we split the first 80% chronological records as

the training set, the 80-90% records as the tuning set, and the last

10% as the test set.

6.2 Experimental Results
6.2.1 RT1: Sequential Transition. This task aims to evaluate the

results of capturing sequential transitions. The HME model is com-

pared with several widely used embedding models:

• FMC [7, 36]: The factorized Markov chain model, which is

commonly used in modeling POI transitions [7, 15, 22, 53].

• ME: The Metric Embedding model [11], which utilizes Eu-

clidean distance to learn sequential transitions.

• Skip-gram: By treating a user’s check-in sequence as a ‘sen-

tence’ and each POI in a sequence as a ‘word’, the skip-

gram technique [30] is widely used to learn POI representa-

tions [5, 27, 55, 56].

FMC, ME and Skip-gram are all built upon the Euclidean space:

FMC and Skip-gram utilize the inner product of two vectors, andME

exploits the Euclidean distance to learn the relations. To evaluate

the quality of capturing sequential transitions, we try to infer new

transition pairs in the test dataset. We use mean average precision
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Figure 3: The performance of predicting new sequential transitions with different numbers of dimensions.

(MAP) to measure the capability of predicting new transition pairs.

The MAP results of different embedding methods with differ-

ent numbers of dimensions are depicted in Figure 3. We can see

that HME significantly outperforms the baselines, especially on

the sparse Tokyo and Houston datasets, achieving improvements

of 50% and 30%, respectively. This result indicates that the hyper-

bolic space has a stronger capability for capturing the transition

relations. For all the methods, the performance first increases with

the increasing of number of dimensions d , and then stops increas-

ing. HME saturates at d = 20, while the other methods saturate at

d = 100, which shows that HME can effectively learn sequential

transitions with smaller d . All reported improvements over baseline

methods are statistically significant with p-value < 0.01.

In addition, the embedding model is expected to reflect the hi-

erarchical structure as implied by the power-law distribution of

POI-POI relations. In Figure 4, we plot each POI’s degree (i.e., num-

ber of POI-POI relations) against the L2-norm of its embedding on

the NYC dataset. Similar results are also observed on the other two

check-in datasets and not reported in this paper. In these figures,

each point represents a POI. For better visualization, the ten most

frequent POIs are highlighted by red squares. As indicated in Figure

4(d), the high-degree POIs have a smaller L2-norm. This is because

the frequent POIs have more connections with other POIs and are

more likely to be driven close to the origin. This observation is

reasonable since nodes close to the origin have smaller distances to

other nodes due to the hyperbolic geometry. Overall, with the HME,

the high-degree POIs are located near the center, while low-degree

POIs are far away from the center. We do not observe similar results

with the Euclidean embedding models (FMC, ME, and Skip-gram),

as shown by Figure 4.

6.2.2 RT2: Next-POI Recommendation. We have shown that HME

can model the sequential transitions well. In this task, we evaluate

its ability to incorporate multiple factors. For next-POI recommen-

dation, sequential transitions and user preferences are the essential

factors, and most of the existing algorithms focus on them. For this

setting, we evaluate the following methods:

• FPMC [7]: The personalized factorized Markov chain [36]

with localized region constraints for solving successive POI

recommendation.

• PRME [11]: The personalized ranking-based metric embed-

ding approach, which models the user preferences and se-

quential transitions in two separate latent Euclidean spaces.

• MEAP [47]: A metric embedding method with asymmetric

projections. It extends PRME by utilizing two projection

matrices to model asymmetric sequential transitions.

• JRLM [55]: The joint representation learning model, which

exploits the word2vec framework [30] to jointly learn em-

beddings of users and POIs.

• Transrec [16]: The state-of-the-art embedding model for

next-item recommendation. It utilizes a translation-based

approach to model sequential behaviors. It adopts the trian-

gle inequality to make recommendation u + lc ≈ l, where u
and lc are the embedding of a user and current location lc .
• HME: Our proposed hyperbolic metric embedding method,

which only exploits two bipartite graphs (POI-POI and POI-

User) to learn the representations of users and POIs.

In addition, some algorithms are able to incorporate the POI’s

regional and categorical information to learn embeddings of items,

i.e., utilizing four kinds of relations (POI-POI, POI-User, POI-Region,

and POI-Category). We evaluate the following methods:

• GraphEmb [43]: A graph-based POI embedding method,

which models the first-order proximity between nodes. We

adapt the method to learn the four bipartite relations

• GLR [29]: The state-of-the-art graph-based latent represen-

tation method for next-POI recommendation. It utilizes the

word2vec framework [30] to learn representations. We mod-

ify it to consider the four bipartite relations .

• HHNE [42]: The state-of-the-art hyperbolic embedding for

heterogeneous networks. To use the same settings of other

baselines, we directly employ this algorithm to learn the four

types of relations.

• HME+: Our proposed model that jointly models all four

types of relations.

For fair comparisons, the geographical distance influence is incor-

porated accordingly for all the methods. Note that all the Euclidean

embedding models achieve their best performance when the num-

ber of dimensions is around 100, as reported in these studies. Hence,

we set the default number of dimensions as 100 for all the evaluated

methods. In addition to MAP, we employ two widely used metrics,

namely Precision@K and Recall@K (denoted by Pre@K and Rec@K,

respectively). K is the number of POIs to be recommended, and set

to 5 and 10. Given the current location of a user, we calculate the

scores of POIs that this user has not visited, and return the top-K

POI candidates according to their scores.

The experimental results are reported in Table 3. Based on the

factors used, the results are divided into two groups. The first group

uses POI-POI relations and POI-User relations. When comparing
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Figure 4: The relationships between a POI’s degree and L2-norm of embedding on the NYC dataset (Best viewed in color).

Dataset Metric FPMC PRME MEAP JRLM Transrec HME GraphEmb GLR HHNE HME+

NYC

MAP 0.0250 0.0483 0.0457 0.0482 0.0460 0.0615 0.0537 0.0546 0.0553 0.0642
Pre@5 0.0067 0.0142 0.0137 0.0166 0.0143 0.0193 0.0159 0.0167 0.0166 0.0210
Rec@5 0.0274 0.0654 0.0638 0.0764 0.0667 0.0863 0.0727 0.0776 0.0750 0.0962
Pre@10 0.0058 0.0103 0.0112 0.0115 0.0102 0.0134 0.0105 0.0121 0.0115 0.0148
Rec@10 0.0492 0.0934 0.1033 0.1064 0.0929 0.1223 0.0966 0.1109 0.1035 0.1371

Tokyo

MAP 0.0855 0.0852 0.0902 0.0898 0.0817 0.1063 0.0729 0.0914 0.0686 0.1115
Pre@5 0.0264 0.0297 0.0274 0.0302 0.0271 0.0329 0.0241 0.0313 0.0209 0.0343
Rec@5 0.1192 0.1329 0.1223 0.1364 0.1211 0.1469 0.1087 0.1418 0.0923 0.1527
Pre@10 0.0170 0.0219 0.0191 0.0218 0.0205 0.0238 0.0173 0.0223 0.0156 0.0242
Rec@10 0.1543 0.1950 0.1721 0.1979 0.1833 0.2133 0.1572 0.2033 0.1379 0.2172

Houston

MAP 0.0629 0.0779 0.0802 0.0729 0.0699 0.0964 0.0780 0.0783 0.0626 0.1006
Pre@5 0.0205 0.0288 0.0239 0.0249 0.0251 0.0305 0.0290 0.0272 0.0213 0.0325
Rec@5 0.0942 0.1343 0.1128 0.1137 0.1180 0.1441 0.1355 0.1272 0.0994 0.1533
Pre@10 0.0142 0.0210 0.0192 0.0196 0.0199 0.0236 0.0226 0.0212 0.0178 0.0246
Rec@10 0.1315 0.1954 0.1815 0.1815 0.1853 0.2219 0.2126 0.1980 0.1659 0.2318

Used factors POI-POI, POI-User POI-POI, POI-User, POI-Region, POI-Category

Table 3: The results of next-POI recommendation on three check-in datasets. All the methods use 100-dimensional represen-
tations. Best results are in boldface.

the results of the Euclidean embedding methods (FPMC, PRME,

MEAP, JRLM, and Transrec), we find that HME significantly out-

performs these Euclidean embedding models on all three check-in

datasets. For the second group, which uses all the four bipartite

graphs, HME+ can get better results than GraphEmb and GLR. For

instance, the MAP of HME+ is 18-28% higher than GraphEmb and

GLR on all three datasets. This is because GraphEmb and GLR are

based on the Euclidean space, which limits their representative

power. In addition, we observe that the performance of HHNE is

not satisfying. The reason is that HHNE needs an extensive amount

of training samples generated by numerous randomwalks, and thus

is not suitable for directly solving this problem. All reported im-

provements over baseline methods in this task are also statistically

significant with p-value < 0.01.

Dataset GraphEmb GLR HHNE HME+

NYC 0.0136 0.0248 0.0202 0.0599
Tokyo 0.0090 0.0413 0.0419 0.1062
Houston 0.0268 0.0432 0.0467 0.0981

Table 4: TheMAP results of next-POI recommendation with
10-dimensional representations. Best results are in boldface.

To further demonstrate the strength of modeling complex data

within a low-dimensional space, we present the MAP results with

number of dimensions d = 10 in Table 4. We find that HME out-

performs the baselines by more than 120% on all three datasets.
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Figure 5: The relationships between degree and L2-norm of
embedding for different nodes (Best viewed in color).

Impressively, the HME with 10 dimensionality even outperforms all

the baselines with d = 100, as can be seen by comparing the results

in Table 3 and Table 4. This finding demonstrates that our proposed

HME can effectively learn good representations even with a small

d . Consequently, the number of parameters can be greatly reduced

compared to the conventional Euclidean embedding models.

To examine the embeddings of HME+, we show the distribution

of L2-norm with degree in Figure 5. Note that the embeddings of

four different types of nodes are jointly learned in the HME+ model.

We observe that the higher the degree of a node, the smaller the

L2-norm. This observation indicates that multiple relationships can

be simultaneously captured.
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Figure 6: The performance of next item recommendation task on four transaction datasets.

6.2.3 RT3: Next-Item Recommendation. We apply HME to the next-

item recommendation problem, and compare with the state-of-

the-art solutions to the problem using the same setting discussed

earlier. FPMC and Transrec are originally developed for next-item

recommendation. PRME, MEAP, JRLM, and HME can be easily

adapted for next-item recommendation as follows. Based on the

online transaction datasets, we can extract item-item and item-user

relations. For each user, we sort his/her transactions by timestamps.

If a user purchases product pi and then purchases product pj , an
item-item sequential transition < pi ,pj > exists. For this task, we

use the MAP score as the evaluation metric.

The results of next-item recommendation are presented in Figure

6. We observe that the proposed HME again consistently outper-

forms the five Euclidean embedding baselines (improvements over

baseline methods are statistically significant with p-value < 0.01).

Particularly, when d = 10, HME still achieves competitive perfor-

mance compared to the baselines. The results on the four datasets

demonstrate the superiority and generality of our HME model.

6.3 Effects of Parameters
We conduct experiments to study the effects of parameters on the

performance of HME. To investigate the effect of the weight of

different componentsw in the next-POI recommendation task, we

report the experimental results on the tuning set. As shown in

Figure 7, HME is able to achieve remarkable results when w ∈
[0.2, 0.6]. The default weightw is set to 0.5 in the experiments.
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Figure 7: The effect of component weight
Moreover, we also investigate the effect of the number of dimen-

sions d and report the results in Figure 8. Overall, we observe an

increase in performance when d increases, but the improvement be-

comes marginal when d > 20. As shown in Figure 8, the hyperbolic

metric embedding can achieve good results even when d is small.

Empirically, the number of dimensions d can be set to 10-20, which

achieves a satisfying trade-off between recommendation quality

and running time.

6.4 Visualization
To better understand the hyperbolic metric embedding, we show 2-

dimensional hyperbolic embeddings on the NYC dataset. We learn
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Figure 8: The effect of number of dimensions

the embeddings of different nodes with the HME+ algorithm and

then present them in a unit disk. We first visualize the explicit hier-

archical structure. We show the embeddings of POIs and categories

in Figure 9(a). We observe that the high-level categories (marked by

red squares) are closer to the origin, whereas the POIs are located

near the boundary. This result indicates that the POI-category hi-

erarchy can be well modeled by the hyperbolic metric embedding.

This result is consistent with previous studies [31, 42].

We further study the visualizations of all nodes. Figure 9(a) shows

2-dimensional embeddings of the nodes grouped by the their de-

grees. Overall, the high-degree nodes are located near the center

while low-degree nodes are placed around the boundary. This visu-

alization demonstrates that the hyperbolic metric embedding can

also effectively reflect the implicit hierarchical structure.
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Figure 9: Visualization of 2-dimensional embeddings on the
NYC dataset (Best viewed in color).

7 CONCLUSION
In this paper, we investigate a novel non-Euclidean representation

problem for the next-POI recommendation task. We develop a hy-

perbolic metric embedding approach that projects the items into

a Poincaré unit ball model, and hence is capable of capturing the

underlying hierarchical structures in the check-in data. We jointly

consider multiple factors in the same hyperbolic metric embedding

model: POI-POI, POI-User, POI-Region, and POI-Category relations.

With the learned hyperbolic embeddings, we can provide personal-

ized next-POI recommendations given a user and his/her current

location. To combine user preferences and sequential transitions,

we further derive an Einstein midpoint aggregation method for
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hyperbolic representations. Based on three real-world check-in

datasets, extensive experiments are conducted to demonstrate the

significant superiority of our hyperbolic metric embedding against

various conventional Euclidean competitors. Empirical results also

demonstrate the generality of HME for next-item recommendation.
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