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ABSTRACT
Recent neural architectures in named entity recognition (NER) have
yielded state-of-the-art performance on single domain data such
as newswires. However, they still suffer from (i) requiring massive
amounts of training data to avoid overfitting; (ii) huge performance
degradation when there is a domain shift in the data distribution
between training and testing. In this paper, we investigate the prob-
lem of domain adaptation for NER under homogeneous and hetero-
geneous settings. We propose MetaNER, a novel meta-learning
approach for domain adaptation in NER. Specifically, MetaNER
incorporates meta-learning and adversarial training strategies to
encourage robust, general and transferable representations for se-
quence labeling. The key advantage of MetaNER is that it is ca-
pable of adapting to new unseen domains with a small amount
of annotated data from those domains. We extensively evaluate
MetaNER on multiple datasets under homogeneous and hetero-
geneous settings. The experimental results show that MetaNER
achieves state-of-the-art performance against eight baselines. Im-
pressively, MetaNER surpasses the in-domain performance using
only 16.17% and 34.76% of target domain data on average for ho-
mogeneous and heterogeneous settings, respectively.

CCS CONCEPTS
• Information systems→ Information extraction; •Comput-
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1 INTRODUCTION
Named entity recognition (NER) is a fundamental task in natural
language processing (NLP), aiming at jointly resolving the bound-
aries and type of a named entity in text [26, 37]. NER not only acts
as a standalone tool for information extraction (IE), but also plays
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an essential role in a variety of downstream applications, such
as information retrieval [15], automatic text summarization [38],
question answering [24], machine translation [1], knowledge base
construction [6], etc.

NER is typically framed as a sequence labeling problem whose
goal is to assign a label to each word in a sentence. Recently, a sig-
nificant amount of work [3, 12, 19, 23, 34, 35, 42] has been devoted
to developing end-to-end neural-based sequence labeling models
for NER. Despite their general success, they still suffer from (1)
requiring a large amount of training data to avoid overfitting; (2)
huge performance degradation when these is a domain shift in the
data distribution between training and testing.

Domain adaptation (DA) has been studied as an effective solu-
tion to address the above data insufficiency and domain shift issues.
For homogeneous DA in NER, the source and target domains have
the same label space. The model trained on source domains can
be directly transferred to target domains [40]. For heterogeneous
DA in NER, it is more difficult to directly transfer models from
source domains due to the label set discrepancy among different
domains. Several studies have tackled heterogeneous DA in NER
by learning correlations between label sets [22, 44] and fine-tuning
the source model with target domain data [25, 32]. However, most
works often require a large amount of annotated target domain
data to achieve accurate domain adaptation. To make an NER sys-
tem more broadly useful, it is crucial to reduce its training data
requirement. This raises a natural question: if we have sufficient
annotated training data in multiple source domains, can we distill
the knowledge and transfer it to help train models in a new target
domain with few annotations from this new domain?

Despite the difficulties arising from label discrepancy, it is pos-
sible to transfer knowledge between domains because named en-
tities often share lexical and context features (e.g., common vocab-
ularies, similar word semantics and similar sentence syntaxes) [4].
As humans, we are able to quickly learn new things from a small
number of examples or a limited amount of experience by lever-
aging prior knowledge [48]. In short, we learn how to learn much
faster and more efficiently across various tasks. Meta-learning [8,
50] was proposed to mimic the human ability of acquiring mul-
tiple tasks simultaneously with minimum information. Recently,
meta-learning has received resurgence in the context of few-shot
learning [9, 63, 64]. Inspired by the essence of meta-learning [43],
our key idea is to leverage the abundant data available in multiple
resource domains to find a robust and general initialization that
could be adapted to new unknown domains or novel entity cate-
gories with a small amount of new data. Figure 1 illustrates the
idea of meta-learning in NER.

In this paper, we decompose any sequence labeling model into
“sequence encoder + tag decoder”. In such a way, different tag
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Figure 1: Illustration of the idea of meta-learning in NER.

decoders are instantiated for heterogeneous domain adaptation.
However, the sequence encoder is shared across all domains and is
designed to aggregate the meta-knowledge from multiple source
domains so that it has maximal performance on a new domain
with a small amount of data. Unfortunately, most existing meta-
learning approaches are designed for classification under the few-
shot setting (i.e., 𝑁 -way 𝐾-shot [57]) which is inapplicable for the
sequence labeling problem where one sentence may have multi-
ple training instances (i.e., entities). Our research tries to seek a
new meta-learning strategy which would be more suitable for en-
couraging robust and general representations in sequence labeling,
rather than for few-shot learning.

More specifically, we propose MetaNER, a novel meta-learning
approach for NER. First, inspired by the recent feature-critic net-
work [31], MetaNER explicitly simulates the training-to-testing
domain shift by splitting source domains into meta-training and
meta-validation sets.MetaNER is trained in two alternating phases.
In the meta-training phase, MetaNER minimizes the loss over all
meta-training sets, resulting in a temporary model. In the meta-
validation phase, the temporary model is evaluated on the meta-
validation sets to minimize the domain divergence, enabling meta-
knowledge transfer across different domains. Second, an adversar-
ial network is used to improve model generalization. All together,
these deliver a robust, general and transferable sequence encoder
for both homogeneous and heterogeneous DA problems. In sum-
mary, the main contributions of this work are five-fold:

• To the best of our knowledge, we are the first to investigate
the problem of transferring meta-knowledge learned from
multiple source domains for sequence labeling in a meta-
learning manner.
• We propose MetaNER, a novel meta-learning approach for

NER. MetaNER incorporates meta-learning and adversarial
training strategies to encourage robust, general and trans-
ferable representations which can be effectively adapted to
new domains with a small amount of training data.
• We extensively evaluate MetaNER on six domains under

homogeneous domain adaptation settings. The results show
thatMetaNER achieves state-of-the-art performance against
eight baselines. Impressively, MetaNER surpasses the in-
domain performance using only 16.17% of target domain
data on average.
• We extensively evaluate MetaNER on nine domains under

heterogeneous domain adaptation settings.The results show
thatMetaNER achieves state-of-the-art performance against
baselines. MetaNER surpasses the in-domain performance
using only 34.76% of target domain data on average.

• We conduct experiments to further analyze the parameter
settings and architectural choices. We also present a study
for qualitative analysis.

2 RELATEDWORK
In this section, we review related work in three parts: named entity
recognition, transfer learning in NER and meta-learning.

2.1 Named Entity Recognition
There are three common paradigms for NER [26]: knowledge-based
unsupervised systems, feature-based supervised systems and neural-
based systems. Knowledge-based unsupervised systems rely on lex-
ical knowledge, including domain-specific gazetteers [6], and shal-
low syntactic knowledge [65].These systems work very well when
there is exhaustive lexicon. Due to domain- and language-specific
rules and incomplete dictionaries, high precision and low recall are
often observed from such systems. Feature-based supervised sys-
tems cast NER as a multi-class classification or sequence labeling
task. Feature engineering is critical in these systems. For exam-
ple, Ji et al. [20] designed 19 local features and 5 global features
for location recognition in Tweets. Settles et al. [51] designed rich
orthographic features and semantic features in biomedical named
entity recognition. Based on manually crafted features, many al-
gorithms have been applied in supervised NER, e.g., the Support
Vector Machine (SVM) [30], Hidden Markov Model (HMM) [36]
and Conditional Random Field (CRF) [20].

Recently, several neural architectures have been widely applied
in NER because neural-based systems have the advantage of infer-
ring latent features and learning sequence labels in an end-to-end
fashion. The use of neural models for NER was pioneered in [3],
where an architecture based on temporal convolutional neural net-
works (CNNs) over a word sequence was proposed. Since then,
there has been a growing body of work on neural-based NER. Ex-
isting neural-based systems can be unified into a framework with
three components: an input representation, context encoder and
tag decoder. Commonly used input representations include word-
level and character-level representations [35, 42, 55]. Widely used
context encoder architectures include CNNs [3], recurrent neural
networks (RNNs) [19], recursive neural networks [29] and deep
transformers [5]. At the top of the context encoder, a CRF layer [67],
a pointer network [27, 28], or an RNN layer [53] is employed to
make sequence label predictions.

2.2 Transfer Learning in NER
Transfer learning aims to perform a machine learning task on a
target domain by taking advantage of knowledge learned from
a source domain [41]. Several studies have already contributed
effort to leveraging deep transfer learning for NER, and can be
categorized along two lines: multi-task learning based approaches
and parameter-sharing approaches. Multi-task learning based ap-
proaches leverage related tasks to improve the performance of all
tasks at the same time. Wang et al. [59] collectively used the train-
ing data of different types of entities and improved the perfor-
mance on each of them. Lin et al. [33] proposed a multi-lingual
multi-task model to jointly solve multiple tasks in different lan-
guages for sequence labeling.
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Most recent transfer approaches fall into the parameter-sharing
category [17]. Commonly, different neural models [7, 13, 16, 21,
47, 61, 66] share certain parts of model parameters between the
source domain and target domain. Yang et al. [62] proposed three
different parameter-sharing models to investigate the transferabil-
ity of different layers of representations. Pius and Mark [58] ex-
tended Yang’s approach to allow joint training on an informal cor-
pus, incorporating sentence-level feature representations. In addi-
tion, a fine-tuning strategy is usually used in parameter-sharing
approaches. Some studies first train a model on source domains
and then use the learned parameters to initialize a model on target
domains. For example, Lee et al. [25] trained a neural model on a
large dataset (MIMIC) and then fine-tuned it on smaller datasets
(i2b2 2014). Other examples along this line can be found in [2, 32].

Our approach differs from these existing solutions in that (1) it
aggregatesmeta-knowledge frommultiple resource domains rather
than a single one to increase the transferability; (2) it learns robust
and general sequence representations for handling both homoge-
neous and heterogeneous adaptations.

2.3 Meta-Learning
Meta-learning (a.k.a. learning to learn) [50, 56] aims to learn a gen-
eral model that can quickly adapt to a new task given very few
training samples, without needing to be retrained from scratch.
Most recent approaches to meta-learning focus on few-shot learn-
ing and can be broadly categorized as metric-based methods [54,
57], memory-basedmethods [46, 49], and optimization-basedmeth-
ods [8, 64]. Some studies [9, 31, 45, 60] have applied meta-learning
strategies for image classification in few-shot learning.

Meta-learning for natural language processing is less common
than for computer vision. There have been a few attempts devoted
to the application of meta-learning in NLP over the last two years.
Gu et al. [14] first explored meta-learning in neural machine trans-
lation.They framed the low-resource translation as ameta-learning
problemwhich learns to adapt to low-resource languages based on
multilingual high-resource language tasks. Huang et al. [18] pro-
posed a method for query generation based on MAML [8], by re-
ducing a regular supervised learning problem to the few-shotmeta-
learning scenario. Qian and Zhou [43] proposed DAML which is
based on meta-learning, to combine multiple dialog tasks during
training, in order to learn general and transferable information
that is applicable to new domains. Lin et al. [39] proposed casting
personalized dialog learning as a meta-learning problem, which al-
lows the model to generate personalized responses by efficiently
leveraging only a few dialog samples instead of human-designed
persona descriptions.

Different from the above studies on classification under the few-
shot setting, our study focuses on sequence labeling in NER, where
one sentence may have multiple training instances (i.e., entities).
In this paper, we are seeking a new meta-learning strategy which
would be more suitable for encouraging robust representations in
sequence labeling, rather than for few-shot learning. To the best of
our knowledge, we are the first to attempt adopting meta-learning
in sequence labeling.

3 PRELIMINARIES
In this section, we first introduce the sequence labeling problem
and distinguish it from classification. Then, we briefly describe the
Model-Agnostic Meta-Learning model and point out the difference
from our scenario.

3.1 Sequence Labeling Problem
Named entity recognition is usually framed as a sequence labeling
problem, which is illustrated, with the input and output, by the
following figure:

Sequence Labeling

Input:

Output:

I1I1

T1T1

I2I2 ININInIn

T2T2 TnTn TNTN

… …

… …

Formally, given an input sequence 𝐼 = {𝐼1, 𝐼2, ..., 𝐼𝑛, ..., 𝐼𝑁 }, the
sequence labeling problem involves the algorithmic assignment of
a categorical label to each member of 𝐼 . This process produces an
output sequence𝑇 = {𝑇1,𝑇2, ...,𝑇𝑛, ...,𝑇𝑁 }. Sequence labeling is dif-
ferent from the conventional classification task, where each mem-
ber is independently classified into a category without taking se-
quence dependency into account. How to model the sequence con-
text and dependency has been a hot spot in the field of sequence
labeling. For the NER task, the named entities can be obtained by
extracting patterns from the produced output tags. For example,
given the input sequence (i.e., sentence) “Michael Jordan was born
in New York City”, we can get two entities (i.e., Person: Michael
Jordan and Location: New York City) from the corresponding tag
sequence “B-Person, E-Person, O, O, O, B-Location, I-Location, E-
Location”1.

3.2 Model-Agnostic Meta-Learning
Model-Agnostic Meta-Learning (MAML) [8] provides a general ap-
proach to adapting parameters across different domains. MAML
solves few-shot learning problems by learning a good parameter
initialization. At test time, such an initialization can be fine-tuned
with a few gradient steps using a limited amount of training exam-
ples from target domains.

Formally, a model is represented by a function 𝑓𝜃 with parame-
ters 𝜃 . MAML first forms a set of training tasks T = {T1, ...,T𝑖 , ...},
where each task consists of a training set and a validation set. In the
𝑁 -way 𝐾-shot [57] classification, the training instances are sam-
pled with 𝐾 labeled examples from each of 𝑁 classes, the model
changes parameters 𝜃 to 𝜃 ′𝑖 by gradient descent:

𝜃 ′𝑖 ← 𝜃 − 𝛼∇L𝑡𝑟T𝑖 (𝑓𝜃 ) (1)

where 𝛼 is a universal learning rate, and LT𝑖 is the task-related
training loss. Model parameters 𝜃 are trained to optimize the per-
formance of 𝑓𝜃 ′𝑖 on the unseen validation examples from T𝑖 across
tasks. This leads to the MAML meta-objective:

min
𝜃

∑
T𝑖
L𝑣𝑎𝑙T𝑖 (𝑓𝜃 ′𝑖 ) = L

𝑣𝑎𝑙
T𝑖 (𝑓𝜃−𝛼∇L𝑡𝑟

T𝑖
(𝑓𝜃 ) ) (2)

1BIOES stands for Begin, Inside, Outside, End, Single.
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meta-validation phase, the base model is updated by gradient descent with respect to the parameters (𝜃, 𝜙,𝛾) on D𝑣𝑎𝑙 . In the
final evaluation phase, the learned sequence encoder is fine-tuned on T𝑡𝑟 and tested on T𝑡𝑒 from a unseen domain D𝑛𝑒𝑤 .

Thegoal ofMAML is to optimize themodel parameters 𝜃 to quickly
adapt to new tasks over a few gradient steps, with few training
examples from the unseen tasks.Themodel parameter 𝜃 is updated
by gradient descent:

𝜃 ← 𝛽∇𝜃
∑
T𝑖
L𝑣𝑎𝑙T𝑖 (𝑓𝜃 ′𝑖 ) (3)

where 𝛽 is the learning rate of meta optimization.
Note that the objective of MAML is designed for few-shot classi-

fication under the problem setting of 𝑁 -way 𝐾-shot. As discussed
in Section 3.1, sequence labeling is commonly not a classification
problem. This is because a training example (i.e., a sentence) in
sequence labeling may have multiple entities whose number and
classes are not known in advance. Therefore, the 𝑁 -way 𝐾-shot
setup is inapplicable for the sequence labeling problem. On the
other hand, the training set and validation set (also known as query
set) in MAML are both from the same task in a single domain. In
this paper, we seek a more suitable optimization objective for se-
quence labeling scenarios. More specifically, we use meta-learning
to encourage robust and general representations for adapting to
new domains with a small amount of annotated training data.

4 METANER: NERWITH META-LEARNING
In this section, we first define the problem of meta-learning for
named entity recognition. Then we present a layer-by-layer de-
scription of MetaNER.

4.1 Problem Statement
Let D𝒔 = {D1, ...,D𝑛, ...,D𝑁 } be 𝑁 source domains in the train-
ing phase, where D𝑛 is the 𝑛-th source domain containing anno-
tated data (X𝑛,Y𝑛). Meanwhile, there are 𝐾 target domains D𝒕 =
{D1, ...,D𝑘 , ...,D𝐾 }, which are unseen in D𝒔 . Likewise,D𝑘 is the
𝑘-th target domain containing annotated data (X𝑘 ,Y𝑘 ). For the
NER task, the input space X𝑛 is raw text (i.e., sentences) and the
label spaceY𝑛 is the corresponding tag sequence that indicates the
start and end positions of a named entity with the BIOES schema.
For homogeneous NER, all the source domains and the target do-
mains share the same label space. For heterogeneous NER, the do-
mains can have different, and even completely, disjoint label spaces.

To make domain adaptation possible in NER, we generally de-
compose any sequence labeling model into two unified modules: a
sequence encoder (learnable parameters 𝜃 ) and a tag decoder (learn-
able parameters𝜙). Our ultimate goal is to learn a meta-knowledge
learner for the sequence encoder by leveraging sufficient source
data D𝒔 . Given a new unseen domain from D𝑛𝑒𝑤 (which can be
either homogeneous or heterogeneous), the new learning task of
NER can be solved by fine-tuning the learned sequence encoder
(domain-invariant parameters) and a new tag decoder (domain-
specific parameters) with only a small number of training samples.
The meta-knowledge learner of the sequence encoder should ag-
gregate the knowledge learned from multiple domains in D𝒔 , re-
sulting in more robust, general and transferable representations,
which can be broadly adapted to achieve optimum performance in
D𝑛𝑒𝑤 with as little as possible.
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4.2 The MetaNER Approach
4.2.1 Overview of MetaNER. Figure 2 shows an overview of our
proposed MetaNER, which consists of a training phase and an
evaluation phase. In the training phase, we adopt a meta-learning
strategy to distill meta-knowledge from a number of source do-
mains. During each iteration, we randomly split all source domains
into a meta-training setD𝑡𝑟 and a meta-validation setD𝑣𝑎𝑙 , where
D𝒔 = D𝑡𝑟 ∪ D𝑣𝑎𝑙 and D𝑡𝑟 ∩ D𝑣𝑎𝑙 = ∅. A meta-training task T𝑖
is sampled fromD𝑡𝑟 and is composed of 𝑛 instances from a partic-
ular domain. Likewise, a meta-validation task T𝑗 is sampled from
D𝑣𝑎𝑙 . The validation errors on D𝑣𝑎𝑙 should be considered to im-
prove the transferability of the model. In short, the meta-learning
strategy aims to encourage the model to learn good parameters
that can be adapted to a new domains with as little data as pos-
sible. We also adopt an adversarial training strategy to improve
model generalization. The adversarial network ensures that the in-
termediate representations from the sequence encoder canmislead
the domain discriminator and correctly guide the tag decoder pre-
diction, while the domain discriminator tries its best to correctly
determine the domain class of each training instance.

In the final evaluation phase, the meta-knowledge learned by
the sequence encoder can be applied to new domains. Given a new
domain D𝑛𝑒𝑤 = {T𝑡𝑟 ,T𝑡𝑒 }, the learned sequence encoder and a
new tag decoder are fine-tuned on T𝑡𝑟 and finally tested on T𝑡𝑒 .
Next, we briefly introduce the sequence labeling model (i.e., “se-
quence encoder + tag decoder”). Then, we describe the adversarial
training strategies and meta-learning strategy in detail.

4.2.2 Sequence Labeling Model. Figure 3 shows the architecture
of CNN-BiGRU-CRF, which uses a Convolutional Neural Network
(CNN) to extract character-level representations, a bidirectional
Gated Recurrent Unit (BiGRU) to encode sequence context and
a Conditional Random Field (CRF) to produce the tag sequence.
Specifically, we decompose the CNN-BiGRU-CRF model into two
modules: a sequence encoder with parameters 𝜃 and a tag decoder
with parameters 𝜙 .

The sequence encoder consists of two layers: the input represen-
tation and context encoder. The input representation in our study
consists of character-level and word-level representations. Given
an input sentence 𝑾 = (𝑊1,𝑊2, . . . ,𝑊𝐿) of length 𝐿, 𝑾 ∈ D,
let𝑊𝑙 denote its 𝑙-th word. The character-level representation (ex-
tracted by the CNN) and word-level embedding (e.g., pretrained
embedding) for𝑊𝑙 are concatenated as its final representation, 𝒙𝑙 ∈
R𝐷 , where𝐷 represents the dimension of 𝒙𝑙 . Note that hand-crafted
features can be easily integrated into this architecture. However,
we do not use any hand-crafted features in this study.

After the input representation layer, the input sequence can be
represented asX = (𝒙1, 𝒙2, . . . , 𝒙𝐿). We use a BiGRU to encode the
sequence context. Specifically, GRU activations at time step 𝑙 are
computed as follows:

𝒛𝑙 = 𝜎 (𝑼𝑧𝒙𝑙 + 𝑹𝑧𝒉𝑙−1 + 𝒃𝑧) (4)
𝒓𝑙 = 𝜎 (𝑼𝑟𝒙𝑙 + 𝑹𝑟𝒉𝑙−1 + 𝒃𝑟 ) (5)
𝒏𝑙 = tanh(𝑼ℎ𝒙𝑙 + 𝑹ℎ (𝒓𝑙 ⊙ 𝒉𝑙−1) + 𝒃ℎ) (6)
𝒉𝑙 = 𝒛𝑙 ⊙ 𝒉𝑙−1 + (1 − 𝒛𝑙 ) ⊙ 𝒏𝑙 (7)

where 𝜎 (·) is the sigmoid function, tanh(·) is the hyperbolic tan-
gent function, ⊙ is an element-wise multiplication, 𝒛𝑙 is the update
gate vector, 𝒓𝑙 is the reset gate vector, 𝒏𝑙 is the new gate vector,
and 𝒉𝑙 is the hidden state at time step 𝑙 . 𝑼 , 𝑹, 𝒃 are encoder pa-
rameters that need to be learned. Each hidden state of the BiGRU
is formalized as: 𝒉𝑙 =

−→
𝒉 𝑙 ⊕

←−
𝒉 𝑙 , where ⊕ indicates a concatena-

tion operation, and −→𝒉 𝑙 and
←−
𝒉 𝑙 are the hidden states of the forward

(left-to-right) and backward (right-to-left) GRUs, respectively. As-
suming the size of the GRU layer is 𝐻 , the encoder yields hidden
states in 𝒉 ∈ R𝐿×2𝐻 .

For the tag decoder, we use a CRF that can model the label se-
quence jointly instead of decoding each label independently. For-
mally, consider 𝒉 = {𝒉1,𝒉2, ...,𝒉𝐿} as the input;𝒚 = {𝑦1, 𝑦2, ..., 𝑦𝐿}
is the corresponding label sequence.Y(𝒉) denotes the set of possi-
ble label sequences for 𝒉. The probabilistic model for the sequence
CRF defines a series of probabilities 𝑝 (𝒚 |𝒉;𝑾 , 𝒃) over all possible
label sequences 𝒚 given 𝒉 by:

𝑝 (𝒚 |𝒉;𝑾 , 𝒃) =
∏𝐿
𝑖=1𝜓𝑖 (𝑦𝑖−1, 𝑦𝑖 ,𝒉)∑

𝒚′∈Y(𝒉)
∏𝐿
𝑖=1𝜓𝑖 (𝑦′𝑖−1, 𝑦

′
𝑖 ,𝒉)

(8)

where 𝜓𝑖 (𝑦′, 𝑦,𝒉) = exp(𝑾𝑇
𝑦′,𝑦𝒉) + 𝒃𝑦′,𝑦 ; 𝑾

𝑇
𝑦′,𝑦 and 𝒃𝑦′,𝑦 are the

weights and bias corresponding to label pair (𝑦′, 𝑦), respectively.

4.2.3 Adversarial Training Strategy. Recall that 𝒉 ∈ R2𝐻 is the
hidden state of the last step in the context encoder. We apply a
Multi-Layer Perceptron (MLP) as a domain discriminator to pre-
dict domain labels 𝑦𝑑 :

𝝎 = softmax(tanh(𝒉· 𝑃 + 𝑝)) (9)
𝒄 = 𝒉𝝎 (10)

𝑝 (𝑦𝑑 |𝒄) = MLP(𝒄) (11)

The tag prediction loss and the domain discriminator prediction
loss are calculated over the meta-training samples in task T𝑖 from
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D𝑡𝑟 . These two losses can be written as

L𝑡𝑟T𝑖 (𝜃, 𝜙) =
∑
T𝑖
− log 𝑝 (𝒚 |𝒉;𝜃, 𝜙) (12)

L𝑑𝑖𝑠T𝑖 (𝜃,𝛾) =
∑
T𝑖
− log 𝑝 (𝑦𝑑 |𝒄;𝜃,𝛾) (13)

where 𝜃 are the learnable parameters of the sequence encoder, 𝜙
are the parameters of the tag decoder, and 𝛾 are the parameters of
the discriminator. At learning time, in order to encourage domain-
invariant features, we seek the parameters 𝜃 that maximize the
loss of the domain discriminator (by making the two feature dis-
tributions as indistinguishable as possible), while simultaneously
seeking the parameters 𝜃 and 𝛾 that minimize the loss of the do-
main discriminator. In addition, we seek the parameters𝜙 thatmin-
imize the loss of the tag decoder. Thus, the optimization problem
involves a minimization with respect to some parameters and a
maximization with respect to others. Based on this idea, we define
the adversarial objective as:

L𝑎𝑑𝑣T𝑖 (𝜃, 𝜙,𝛾) = L
𝑡𝑟
T𝑖 (𝜃, 𝜙) − 𝜆L

𝑑𝑖𝑠
T𝑖 (𝜃,𝛾) (14)

The parameter 𝜆 controls the trade-off between the two objectives.
Then, we deliver a saddle point of L𝑎𝑑𝑣T𝑖 (𝜃, 𝜙,𝛾) as

(𝜃, 𝜙) = argmin
𝜃,𝜙
L𝑎𝑑𝑣T𝑖 (𝜃, 𝜙,𝛾) (15)

𝛾 = argmax
𝛾
L𝑎𝑑𝑣T𝑖 (𝜃, 𝜙,𝛾) (16)

Following [11], we add a special gradient reversal layer below the
shared layer to address the minimax optimization problem.

4.2.4 Meta-Learning Strategy. Themeta-learning strategy consists
of two core phase: a meta-training phase and a meta-validation
phase, as shown in Figure 2.
Meta-Training (Inner Loop). In the meta-training phase, our ap-
proach tries to learn adaptation parameters from themeta-training
domains D𝑡𝑟 , resulting in a temporary model. The parameters of
the temporary model are adapted by gradient descent in a similar
manner to the feature-critic networks [31]:

𝜃
(𝑜𝑙𝑑 )
𝑖 = 𝜃𝑖−1 − 𝛼∇𝜃𝑖−1L

𝑡𝑟
T𝑖 (𝜃𝑖−1, 𝜙𝑖−1) (17)

𝜃
(𝑛𝑒𝑤 )
𝑖 = 𝜃 (𝑜𝑙𝑑 )𝑖 − 𝛼∇𝜃𝑖−1𝜆L

𝑑𝑖𝑠
T𝑖 (𝜃𝑖−1, 𝛾𝑖−1) (18)

where 𝑖 is the adaptation step in the inner loop, and 𝛼 is the learn-
ing rate of the inner optimization. At each adaptation step, the gra-
dients are calculated with respect to the parameters from the previ-
ous step (i.e., ∇𝜃 𝑗−1 ). Note that L𝑑𝑖𝑠T𝑖 is already operated with a gra-
dient reversal layer. The base model parameters 𝜃0, 𝜙0, 𝜑0 should
not be changed in the inner loop (i.e., when updating the tempo-
rary model).
Meta-Validation (Outer Loop). After meta-training, MetaNER
has already learned a temporary model (𝜃 (𝑜𝑙𝑑 )𝑖 , 𝜃

(𝑛𝑒𝑤 )
𝑖 , 𝜙0, 𝛾0) in

the meta-training domains D𝑡𝑟 . The meta-validation phase tries
to minimize the distribution divergence between the source do-
mains D𝑡𝑟 and simulated target domains D𝑣𝑎𝑙 using the learned
temporarymodel. It mimics the process of the temporarymodel be-
ing adapted to unseen domains. More specifically, the outer meta-
validation loss is computed on the task T𝑗 from themeta-validation

Algorithm 1: Training MetaNER
Input: D = {D1, ...,D𝑁 }, and 𝛼, 𝛽
Output: Model Φ

1 Initialize 𝜃,𝜙,𝛾 ;
2 while not converge do
3 Randomly split D = D𝑡𝑟 ∪ D𝑣𝑎𝑙 and D𝑡𝑟 ∩ D𝑣𝑎𝑙 = ∅;
4 Let Φ = {𝜃0, 𝜙0, 𝛾0}
5 for 𝑗 in meta batch do // Outer loop
6 Sample a task T𝑗 fom D𝑣𝑎𝑙 ;
7 Meta-training:
8 for 𝑖 in adaptation steps do // Inner loop
9 Sample a task T𝑖 from D𝑡𝑟 ;

10 Compute meta-training loss L𝑡𝑟
T𝑖 ;

11 Compute domain loss L𝑑𝑖𝑠
T𝑖 ;

12 Compute adapted parameters with gradient descent
for 𝜃𝑖−1; // T𝑖 , ∇𝜃𝑖−1

13 𝜃 (𝑜𝑙𝑑 )𝑖 = 𝜃𝑖−1 − 𝛼∇𝜃𝑖−1L𝑡𝑟
T𝑖 (𝜃𝑖−1, 𝜙𝑖−1 ) ;

14 𝜃 (𝑛𝑒𝑤)𝑖 = 𝜃 (𝑜𝑙𝑑 )𝑖 − 𝛼∇𝜃𝑖−1𝜆L𝑑𝑖𝑠
T𝑖 (𝜃𝑖−1, 𝜙𝑖−1 ) ;

15 Meta-validation:
16 Compute meta-validation loss on T𝑖 :
17 L𝑣𝑎𝑙

T𝑗 (𝜃
(𝑜𝑙𝑑 )
𝑖 , 𝜃 (𝑛𝑒𝑤)𝑖 , 𝜙0, 𝛾0 ) ;

18 Meta-optimization:
19 Perform gradient step w.r.t Φ:
20 𝜃0 ← 𝜃0 − 𝛽∇𝜃0

∑
T𝑖 L

𝑎𝑑𝑣
T𝑖 ; // T𝑖 , ∇𝜃0

21 𝜙0 ← 𝜙0 − 𝛽∇𝜙0

∑
T𝑗 L

𝑣𝑎𝑙
T𝑗 ; // T𝑗 , ∇𝜙0

22 𝛾0 ← 𝛾0 − 𝛽∇𝛾0
∑
T𝑗 L

𝑣𝑎𝑙
T𝑗 ; // T𝑗 , ∇𝛾0

domains D𝑣𝑎𝑙 by

L𝑣𝑎𝑙T𝑗 (𝜃
(𝑜𝑙𝑑 )
𝑖 , 𝜃

(𝑛𝑒𝑤 )
𝑖 , 𝜙0, 𝛾0) = L𝑡𝑟T𝑗 (𝜃

(𝑜𝑙𝑑 )
𝑖 , 𝜙0) + L𝑑𝑖𝑠T𝑗 (𝜃

(𝑛𝑒𝑤 )
𝑖 , 𝛾0)

(19)
Equation (19) can make the value range and gradient more sta-

ble [31]. The base model is updated by gradient descent:

𝜃0 ← 𝜃0 − 𝛽∇𝜃0
∑
T𝑖
(L𝑡𝑟T𝑖 (𝜃, 𝜙) − 𝜆L

𝑑𝑖𝑠
T𝑖 (𝜃,𝛾)) (20)

𝜙0 ← 𝜙0 − 𝛽∇𝜙0

∑
T𝑗
L𝑣𝑎𝑙T𝑗 (21)

𝛾0 ← 𝛾0 − 𝛽∇𝛾0
∑
T𝑗
L𝑣𝑎𝑙T𝑗 (22)

where 𝛽 is the meta-learning rate. Note that Equations (21) and
(22) are computed by differentiating the loss L𝑣𝑎𝑙T𝑖 with respect to
the parameters 𝜙0, 𝜑0. Unlike the common gradient, the update
mechanism of Equations (21) and (22) involves a gradient (w.r.t.
the parameters of the base model) through a gradient (w.r.t. the
parameters of the temporary model). This process requires second
order optimization partial derivatives.

4.2.5 Algorithm Flow. The pseudocode for training MetaNER is
given in Algorithm 1. At each iteration, we randomly split D into
D𝑡𝑟 and D𝑣𝑎𝑙 for the inner loop and outer loop, respectively. In
the inner loop, MetaNER takes a gradient step to get new adap-
tation parameters, and obtains the new meta-validation loss. In
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Algorithm 2: Adapting MetaNER
Input: Training set 𝑆𝑡𝑟 and test set 𝑆𝑡𝑒 of an unseen domain

D𝑛𝑒𝑤

Output: Performance on 𝑆𝑡𝑒
/* Fine-tuning the sequence labeling model */

1 Initialize 𝜃 from Algorithm 1;
2 Instantiate a new tag decoder 𝜙 ;
3 while available training data do
4 Sample a task T𝑡𝑟 from 𝑆𝑡𝑟 ;
5 Update 𝜃 ← 𝜃 − 𝛽∇𝜃

∑
T𝑡𝑟 L𝑡𝑟

T𝑡𝑟
6 Update 𝜙 ← 𝜙 − 𝛽∇𝜙

∑
T𝑡𝑟 L𝑡𝑟

T𝑡𝑟
7 return Optimal 𝜃∗ and 𝜙∗

/* Final test on 𝑆𝑡𝑒 */
8 𝑃𝑟𝑒𝑐𝑖𝑠𝑜𝑛, 𝑅𝑒𝑐𝑎𝑙𝑙, 𝐹1 = 𝑓T𝑡𝑒 (𝜃∗, 𝜙∗ )

the outer loop, MetaNER uses the validation on D𝑣𝑎𝑙 to differ-
entiate through the inner loop and update the parameters of the
base model: 𝜃0, 𝜙0, 𝜑0. The pseudocode for adapting MetaNER is
given in Algorithm 2.

5 EXPERIMENTS
In this section, we first detail the experimental setups. Then, we
present our experimental results on both homogeneous domain
adaptation and heterogeneous domain adaption.

5.1 Experimental Setups
5.1.1 Baseline Methods. We evaluate MetaNER against the fol-
lowing competitors:
• In-Domain - This is trained on the training set of a target

domain, and tested on the test set of that target domain us-
ing the CNN-BiGRU-CRFmodel.Therefore, its performance
can be regarded as the upper bound of transferring tasks
without using any additional resources.
• D-Shift - This is trained on the combination of training sets

from all source domains. Then, the evaluation is conducted
on the test set of a target domain using the direct domain
shift strategy.
• AGG - This simply aggregates the training sets across all

source and target domains. Note that no domain adaptation
technique is used during training and testing.
• FineTuning - This is first trained on the training sets of the

source domains, and then retrained on the training set of a
target domain [25].
• MultiTask -Thismodels different domains as different tasks,

which are jointly trained on the training sets of the source
and target domains in a multi-task learning manner [62].
• DANN -This is an unsupervised domain adaptation approach

with adversarial training [11]. This model is further fine-
tuned using the training set of the target domain.
• WPZ - This is a few-shot learning model that regards the

sequence labeling problem as classification of each single
token [10]. It is first trained on source domains and then
retrained on target domains for token-level classification.
• MetaNER-Zero - This is trained on source domains the Al-

gorithm 1 proposed in Section 4.2.5, without fine-tuning.

Domains #Types #Sentences #MentionsTrain Dev Test

BC 7 2381 298 298 7291
BN 7 3427 428 429 8606
CTS 7 2731 342 342 8047
NW 7 1858 232 233 7969
UN 7 1790 224 224 5177
WL 7 1730 216 217 5141

Table 1: Statistics of the ACE2005 dataset used in homoge-
neous domain adaptation for NER.

5.1.2 Implementation Details. For all neural network models, we
use GloVe 300-dimensional pre-trained word embeddings released
by Stanford, which are fine-tuned during training. The dimension
of the character-level representation is 100 and the CNN filters are
[2, 3, 4, 5]. The total number of CNN filters is 100.The bidirectional
GRU has a depth of 1 and hidden size of 128.The inner learning rate
𝛼 is 0.0001 and meta-learning rate 𝛽 is 0.001. We use a dropout of
0.5 after the convolutional or recurrent layers and a fixed L2 reg-
ularization of 10−6. The decay rate is 0.09 and the gradient clip
is 5.0. Our proposed MetaNER is implemented with the PyTorch
framework and evaluated on NVIDIA Tesla V100 GPUs. Note that
MetaNER requires second order optimization partial derivatives.
Unfortunately, the double backward for_cudnn_rnn_backward
has not been implemented in PyTorch so far. Thus, we use the first
order derivatives in meta-learning.

5.2 Homogeneous Domain Adaptation
5.2.1 Datasets and Setups. In this experiment, we use the Auto-
matic Content Extraction 2005 (ACE2005) dataset2, which consists
of six domains: Broadcast Conversations (BC), Broadcast News (BN),
Conversational Telephone Speech (CTS), Newswire (NW), Usenet
(UN), andWeblog (WL).The six domains have homogeneous entity
types: Person, Organization, Location, Geo-Political Entity, Facil-
ity, Vehicle andWeapon. ACE2005 is annotated with nested named
entities. For example, the sentence “Orders went out today to de-
ploy 17,000 U.S. Army soldiers in the Persian Gulf region” is origi-
nally annotated as [17,000 U.S. Army soldiers]𝑃𝐸𝑅 , [U.S.]𝐺𝑃𝐸 , [U.S.
Army]𝑂𝑅𝐺 , [the Persian Gulf region]𝐿𝑂𝐶 , [Persian Gulf]𝐿𝑂𝐶 . We
only keep the innermost entities for nested entities.That is, this ex-
ample sentence is preprocessed as [U.S.]𝐺𝑃𝐸 and [PersianGulf]𝐿𝑂𝐶
in our experiments. Table 1 reports the statistics of the six domains
of ACE2005.

Following the setting in [31, 52], we adopt the leave-one-out
evaluation protocol by picking one domain to hold out as the tar-
get domain D𝑛𝑒𝑤 for the final evaluation. For each iteration in
the training phase, four source domains are randomly chosen as
the meta-training domains D𝑡𝑟 , and the remaining domain as the
meta-validation domain D𝑣𝑎𝑙 . We measure the performance of all
models based on the popular and widely adopted standard metric
used in NER: micro-F1 score.

5.2.2 Experimental Results. Table 2 reports the results of different
methods under the leave-one-out settings. We make the following
observations:
2https://catalog.ldc.upenn.edu/LDC2006T06

https://catalog.ldc.upenn.edu/LDC2006T06
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Target Domains In-Domain D-Shift AGG FineTuning MultiTask DANN WPZ MetaNER-Zero MetaNER

BC 72.13 64.43 73.22 73.94 74.65 74.92 73.83 67.78 76.04*
BN 66.75 62.78 67.11 68.13 69.02 68.35 67.61 64.26 71.42*
CTS 81.56 68.43 82.15 82.97 83.04 83.22 82.67 70.79 84.12*
NW 74.19 66.93 75.28 76.82 77.21 75.96 76.44 69.58 79.57*
UN 65.17 64.18 68.20 69.73 72.73 71.34 70.04 65.13 74.08*
WL 65.60 61.32 67.21 68.56 70.32 69.41 68.27 63.59 72.04*

Average 70.90 64.67 72.19 73.35 74.49 73.86 73.14 66.85 76.21*
Improvement ↑7.49% ↑17.84% ↑5.57% ↑3.90% ↑2.31% ↑3.18% ↑4.20% ↑14.00% -

Table 2: Performance (F1 Scores,%) of homogeneous domain adaptation for NER.The best performance is in boldface and the
second best is underlined. Significant improvements over the baselines are marked with * ( 𝑝-value < 0.05).

Figure 4: F1 score (MetaNER) w.r.t. the percentage of the
target domain training set for different target domains.
MetaNER surpasses the In-Domain performance using only
16.17% of training data of target domains, on average.

First, MetaNER outperforms all baseline methods in terms of
F1 scores. More specifically, our model outperforms In-Domain, D-
Shift, AGG, FineTuning, MultiTask, DANN, WPZ and MetaNER-
Zero by relative F1 improvements of 7.49%, 17.84%, 5.57%, 3.90%,
2.31%, 3.18%, 4.20% and 14.00%, respectively. We attribute this to
the fact that MetaNER explicitly simulates domain shift during
training via meta-learning, which is helpful for adapting to a novel
target domain.

Second, D-Shift and MetaNER-Zero both do not use the target
domain data. Both methods suffer from performance degradation
when adapting to specific domains. However, the zero-shot ver-
sion of our approach (MetaNER-Zero) still outperforms the direct
domain shift method (D-Shift).

Third, AGG consistently outperforms In-Domain (which is the
upper bound performance using in-domain training sets) on all tar-
get domains. This is because the six domains have homogeneous
entity labels from the same dataset (ACE2005). Therefore, the dif-
ferences among these six domains in terms of statistical distribu-
tions are relatively small. As such, aggregating the training sets
across all source and target domains can slightly enhance the per-
formance of the In-Domain method. Notably, MetaNER signifi-
cantly outperforms the In-Domain method by an average improve-
ment of 7.49%.

Figure 5: F1 score w.r.t. the percentage of the target domain
training set for differentmethods on the CTS target domain.

Although the above experiments gain significant improvements
when the full training sets of target domains are available, we are
more interested in the low-resource scenarios.We employ the same
setup as previously and vary the data ratio of the target training
set as 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1. Figure 4 illustrates the
F1 scores of MetaNER with respect to the data ratios of the target
domain training data across different target domains. Impressively,
MetaNER surpasses the performance of In-Domainmethods using
only 31%, 23%, 19%, 16%, 2% and 6% of the target domain training
sets for BC, BN, CTS, NW, UN, and WL, respectively.

Figure 5 shows the F1 scoreswith respect to the data ratios of the
target domain training sets for different methods on the CTS target
domain. On average, the baseline methods perform on par with the
In-Domainmodel (In-Domain bound) using 67% of training data on
CTS. Compared with these baseline methods, MetaNER surpasses
the In-Domain bound using only 19% of the training data.The same
observations hold for the BC, BN, NW, UN and WL domains.

5.3 Heterogeneous Domain Adaptation
5.3.1 Datasets and Setups. For the heterogeneous domain adap-
tation, we use four datasets as source domains and five datasets
as target domains. Table 4 summarizes the statistics of these nine
datasets. CoNLL03, OntoNotes5.0,WikiGold andWNUT17 are from
the domains of newswires, various, social media and Wikipedia,
respectively. BioNLP13PC, MIT Movie, MIT Restaurant, Re3d and



MetaNER: Named Entity Recognition with Meta-Learning WWW ’20, April 20–24, 2020, Taipei, Taiwan

Target Domains In-Domain D-Shift AGG FineTuning MultiTask DANN WPZ MetaNER-Zero MetaNER

BioNLP13PC 82.11 - 79.03 82.05 83.23 83.75 81.54 - 85.11*
MIT Movie 82.48 - 83.18 84.27 85.03 83.95 82.79 - 86.41*

MIT Restaurant 74.86 - 73.12 75.39 76.21 75.97 74.84 - 78.05*
Re3d 62.74 - 26.04 63.21 64.52 65.78 63.89 - 68.52*
SEC 75.86 - 70.00 76.38 78.82 81.32 77.53 - 83.44*

Average 75.61 - 66.27 76.26 77.56 78.15 76.11 - 80.30*
Improvement ↑6.20% - ↑21.17% ↑5.29% ↑3.53% ↑2.75% ↑5.51% - -

Table 3: Performance (F1 Scores,%) of the heterogeneous domain adaptation for NER.The best performance is in boldface and
the second best is underlined. Significant improvements over the baselines are marked with * ( 𝑝-value < 0.05).

Datasets #Types #Sentences #MentionsTrain Dev Test

Source Domains
CoNLL03 4 14041 3250 3453 34841

OntoNotes5.0 18 59917 1009 1287 104248
WikiGold 4 143342 1500 1696 300069
WNUT17 6 3394 1009 1287 3850

Target Domains
BioNLP13PC 4 2498 856 1694 15885
MIT Movie 12 8797 978 2443 26634

MIT Restaurant 8 6894 766 1521 18514
Re3d 10 687 77 199 3388
SEC 4 1047 117 303 1479

Table 4: Statistics of the datasets used in heterogeneous do-
main adaptation for NER.

SEC are from the domains of medical, movie, restaurant, defense
and finance, respectively.

For each iteration in the training phase, three source domains
are randomly chosen as the meta-training domains, and the re-
maining one as the meta-validation domain. In the final evaluation
phase, we fine-tune the sequence encoder learned from source do-
mains and instantiate a new tag decoder for each target domain.
Note that the methods of D-Shift and MetaNER-Zero cannot be
used in heterogeneous settings because source and target domains
have different label spaces.

5.3.2 Experimental Results. Table 3 reports the results of different
methods under heterogeneous settings. We make the following ob-
servations:

First,MetaNER outperforms all competitors in terms of F1 scores.
More specifically, our model outperforms In-Domain, AGG, Fine-
Tuning, MultiTask, DANN and WPZ by relative F1 improvements
of 6.20%, 21.17%, 5.29%, 3.53%, 2.75% and 5.51%, respectively.

Second, on average across all target domains, the performance
of In-Domain is better than AGG, and all other baselines (i.e., Fine-
Tuning, MultiTask, DANN and WPZ) are better than In-Domain.

Third, different from homogeneous adaptation, under heteroge-
neous settings, simply aggregating source and target domains can
both boost and worsen the performance of the In-Domain method,
which is also observed in [31]. For example, the performance of
AGG is much worse than the In-Domain method on the Re3d do-
main, while sightly better on the MIT Movie domain. Overall, the
performance of AGG is worse than In-Domain in most cases. This

Figure 6: F1 score (MetaNER) w.r.t. the percentage of the
target domain training set for different target domains.
MetaNER surpasses the In-Domain performance using only
34.76% of training data of target domains, on average.

Figure 7: F1 score w.r.t. the percentage of the target domain
training set for differentmethods on the BioNLP13PC target
domain.

is because the larger difference between source and target domains
makes heterogeneous adaptation more challenging.

We also investigate the performances in low-resource scenarios.
We employ the same setup as previously and vary the data ratio of
the target training sets as 0.05, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, and 1.
Figure 6 illustrates the F1 scores of MetaNER with respect to the
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Targets NER Results by MetaNER Correct

H
om

og
en

eo
us BC Orders went out today to deploy 17,000 JU.S. ArmyKOrg soldiers in the JPersian GulfKLoc. 7

BN a Jmajor league baseball officialKOrg official is skilledded to conduct interviews in JchicagoKGPE. 7

CTS JDianeKPer Do y’all do cross country moves , or just local? 7

NW JProtestersKPer also gathered in their thousands in JHalifaxKGpe, JCalgaryKGpe, JEdmontonKGpe and JVancouverKGpe. 3

UN JAnalystsKPer say both JIndiaKGpe and JEnronKGpe have little to gain from a protracted legal battle. 3

WL JDisgruntled soldiersKPer complained to JRumsfeldKPer about long deployments and a lack of Jarmored vehiclesKVeh. 3

H
et
er
og

en
eo

us BioNLP13PC JTAK1KGgr activated JIKKalphaKGgr and JIKKbetaKGgr in the presence of JTAB1KGgr. 3

MIT Movie list the Jfive starKRatings rated movies starring Jmel gibsonKActor 3

MIT Restaurant are there any places around here that has Jtomato sauceKDish based dishes 7

Re3d Responding to the report JGareth BayleyKPer, the JUKKNat Special Representative for JSyriaKNat said: 7

SEC Attention: JFrank WoutersKPer, JCEO Lender 138 Bartlett Street MarlboroKPer, JMassachusettsKLoc. 7

Table 5: Positive and negative examples forMetaNER with 10% of the training data from target domains. The results produced
by MetaNER are marked with J K. The green and red highlights indicate a correct and incorrect (missed) result, respectively.

(a) Study for architectural choices (b) Parameter study for 𝜆

Figure 8: Impact of architectural choices and parameter 𝜆.

data ratios of the target domain training sets across different tar-
get domains. Different from the previous homogeneous adaptation
cases, MetaNER needs more training data from target domains to
outperform the In-Domain method. More specifically, MetaNER
surpasses the performance of In-Domain methods using only 52%,
41%, 45%, 31% and 5% of training data for BioNLP13PC, MITMovie,
MIT Restaurant, Re3d, and SEC, respectively. Figure 7 shows the
F1 scores with respect to the data ratios of the target domain train-
ing sets for different methods on the BioNLP13PC target domain.
Compared with the baseline methods, MetaNER quickly achieves
the same performance as In-Domain (In-Domain bound) using less
training data. The same observations hold for the MIT Movie, MIT
Restaurant, Re3d, and SEC domains.

5.4 Further Analysis
In this section, we first study the impact of key hyperparameter
settings and various architectural choices on model performance.
Then we present a qualitative analysis.

5.4.1 Ablation Study. Table 8(a) reports an ablation analysis on
the test set of BioNLP13PC.The fullmodel is our proposedMetaNER.
There are five variations: we remove the adversarial strategy, re-
move the meta-learning strategy, update the model using 𝜃 (𝑛𝑒𝑤 )
only, update themodel usingMAML [8], and remove CNNs.We ob-
serve that our update mechanism outperforms the MAML method.
Meanwhile, the character-level representations play an important
role in domain adaptation for NER.This ablation study clearly show-
cases the importance of each component of MetaNER.

Table 8(b) reports a study on parameter sensitivity for 𝜆. Pa-
rameter 𝜆 is the trade-off between the tag decoder loss and do-
main discriminator loss during adversarial training. We observe
that 𝜆 = 0.8 yields the best empirical performance. This empiri-
cal result demonstrates that we need to balance the two learning
objectives for better transferability.

5.4.2 Qualitative Analysis. Because we are more interested in low-
resource scenarios, we train MetaNER using only 10% of the train-
ing data for all target domains. Table 5 shows some positive and
negative examples for homogeneous and heterogeneous domain
adaptations. For the homogeneous domain adaptation, we only
keep the innermost entities for all nested entities when prepro-
cessing the ACE2005 dataset. This may lead to many short enti-
ties being present in the ground truth. For the negative example
in BC, the ground truth entity is JU.S. KGpe, while our result isJU.S. ArmyKOrg. For the negative example in BN, the ground truth
entity is Jmajor league baseballKOrg, while MetaNER fails to de-
tect the correct boundaries of this entity. For the example in CTS,
MetaNER misses an entity Jy’allKOrg. From the negative exam-
ples in the heterogeneous domain adaptation, we also observe that
MetaNER misses some entities and wrongly detects the bound-
aries of others. In summary, the different annotation criteria in
different domains are the key factors affecting transferability. Al-
though MetaNER is designed for domain adaptation, we do not
claim that it can handle all cases in the real world where the natu-
ral language is complicated and noisy.

6 CONCLUSION
In this paper, we are the first to investigate meta-learning for se-
quence labeling. We proposed MetaNER, a novel meta-learning
approach for both homogeneous and heterogeneous domain adap-
tations in NER. In particular, MetaNER can effectively learn a ro-
bust and general sequence encoder from multiple source domains.
The key advantage of MetaNER is that it can accurately adapt to
unseen domains with a small amount of data. We conducted ex-
tensive experiments on homogeneous and heterogeneous domain
adaptations in NER. The experimental results demonstrate the ef-
fectiveness of our proposed approach. We also conducted experi-
ments to analyze the parameter settings and architectural choices.
Finally, a case study was presented for qualitative analysis.
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