
World Wide Web (2019) 22:1699–1725
https://doi.org/10.1007/s11280-018-0621-y

LinkLive: discovering Web learning resources
for developers from Q&A discussions

Jing Li1 ·Zhenchang Xing2 ·Aixin Sun1

Received: 13 February 2017 / Revised: 27 June 2018 / Accepted: 28 June 2018 /
Published online: 23 July 2018
© Springer Science+Business Media, LLC, part of Springer Nature 2018

Abstract Software developers need access to correlated information (e.g., API documen-
tation, Wikipedia pages, Stack Overflow questions and answers) which are often dispersed
among different Web resources. This paper is concerned with the situation where a devel-
oper is visiting a Web page, but at the same time is willing to explore correlated Web
resources to extend his/her knowledge or to satisfy his/her curiosity. Specifically, we present
an item-based collaborative filtering technique, named LinkLive, for automatically recom-
mending a list of correlated Web resources for a particular Web page. The recommendation
is done by exploiting hyperlink associations from the crowdsourced knowledge on Stack
Overflow. We motivate our research using an exploratory study of hyperlink dissemina-
tion patterns on Stack Overflow. We then present our LinkLive technique that uses multiple
features, including hyperlink co-occurrences in Q&A discussions, locations (e.g., question,
answer, or comment) in which hyperlinks are referenced, and votes for posts/comments in
which hyperlinks are referenced. Experiments using 7 years of Stack Overflow data show
that, our technique recommends correlated Web resources with promising accuracy in an
open setting. A user study of 6 participants suggests that practitioners find the recommended
Web resources useful for Web discovery.

Keywords API documentation · Recommendation systems · Web discovery ·
Social media

� Jing Li
jli030@e.ntu.edu.sg

Zhenchang Xing
zhenchang.xing@anu.edu.au

Aixin Sun
axsun@ntu.edu.sg

1 School of Computer Science and Engineering, Nanyang Technological University,
Singapore, Singapore

2 College of Engineering and Computer Science, Australian National University, Canberra, Australia

http://crossmark.crossref.org/dialog/?doi=10.1007/s11280-018-0621-y&domain=pdf
http://orcid.org/0000-0003-2780-5127
mailto: jli030@e.ntu.edu.sg
mailto: zhenchang.xing@anu.edu.au
mailto: axsun@ntu.edu.sg


1700 World Wide Web (2019) 22:1699–1725

1 Introduction

Software developers perceive online programming resources as the “key information
resource” in their learning and work [13]. The ability to search, understand, and use online
programming resources is one of the key abilities affecting software developers’ efficiency
and success [75]. In general, Web users’ information needs can be categorized at a high
level as informational, navigational, and transactional [16]. In informational search, there
are many situations in which users know the topics they are looking for, and are willing to
explore correlated Web resources to extend their knowledge or to satisfy their curiosity [36,
50, 84].

For example, when visiting a Web page about Singleton design pattern, a developer may
be willing to explore correlated Web resources, such as other design patterns (e.g., Abstract
Factory pattern), concepts related to Singleton pattern (e.g., double-checked locking and
enum-based singleton), or Singleton pattern implementations. As another example, consider
a developer who visits the JUnit website. The developer may appreciate recommendations
of correlated Web resources. Examples include alternatives to JUnit like TestNG, mocking
framework for unit testing in Java like EasyMock, testing frameworks for Web development
like Selenium, or code analysis tools like PMD.

Search-based methods often cannot help developers discover correlated and new Web
resources [19], because search engines generally employ keyword matching or rely on cer-
tain content similarity of Web resources. Correlated Web resources, however, may not have
similar content. For example, commercial search engines cannot return the four commonly-
used visualization tools at once: D3,1 Gephi,2 Raphael3 and Highchart.4 The four webpages
share only very few general concepts, i.e., “library” and “visualization”. Another exam-
ple is about software design patterns: Singleton pattern,5 Abstract Factory pattern,6 and
Double-checked locking.7 Furthermore, when developers have no or little knowledge about
the correlated information that they may be interested in, it is difficult for them to formu-
late an effective search query. Particularly, for a developer who just starts learning design
patterns, it is unlikely that he/she knows Double-checked locking is a concept related to
Singleton pattern. Thus, an automatic technique that recommends correlated Web resources
when developers visit a particular Web page can greatly assist them in discovering correlated
Web resources. Our study addresses this particular need by exploiting the crowdsourced
knowledge on Stack Overflow.

The idea of recommending correlated Web resources for a particular Web page is related
to recommendation systems for e-commerce websites. In particular, item-based collabora-
tive filtering approaches attempt to summarize product browsing or transaction history to
recommend more products that are related to a particular product [34, 43, 65, 82]. Applied
to Stack Overflow, the idea is to exploit the crowdsourced knowledge on the correlation of
Web resources that are highly recognized by the community.

1https://d3js.org/
2https://gephi.org/
3http://dmitrybaranovskiy.github.io/raphael/
4https://www.highcharts.com/
5https://en.wikipedia.org/wiki/Singleton pattern
6https://en.wikipedia.org/wiki/Abstract factory pattern
7https://en.wikipedia.org/wiki/Double-checked locking

https://d3js.org/
https://gephi.org/
http://dmitrybaranovskiy.github.io/raphael/
https://www.highcharts.com/
https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Abstract_factory_pattern
https://en.wikipedia.org/wiki/Double-checked_locking


World Wide Web (2019) 22:1699–1725 1701

Question Title Singleton Pattern Interview

Question Body I am recently asked about java related question in an interview with following
code, since I am very new to java and barely code in Java so I really have no
idea what the following code does.

Answer 1 This is a Singleton Pattern.
Here’s an example of Lazy Initialization, thread-safe singleton pattern fromWi-
kipedia:
...
Setting the instance variable to volatile tells Java to read it from memory and to
not set it in cache.
Synchronized statements or methods help with concurrency. Read more about
double checked locking which is what happens for a “lazy initialization” sing-
leton.

Comment 1 double-checked locking

Answer 2 Interviewer basically wants to check your knoweldge of Singleton pattern . Can
the pattern be broken?. Ans is Yes. Check this or google - when singleton is not
a singleton.
Best course is to use Enum based Singleton as suggested by Joshua Bloch.

Answer 3 For singleton there are two standards that are being used:
Double Checked locking, Enum based singleton pattern.
UPDATE: Here is another great article which discusses the
double checked locking.

Figure 1 An example of Web linked resources on Stack Overflow. Hyperlinks are underlined.

Figure 1 shows an example Q&A on Singleton pattern8. In the discussion, users reference
11 Web resources related to Singleton pattern. Nine out of these 11 resources are refer-
enced more than 5 times on Stack Overflow. Among frequently referenced Web resources
on Stack Overflow, some are referenced hundreds or thousands of times. For example, the
first Web resource for “Singleton Pattern” is referenced 1204 times and the Web resource
for “Synchronized statements or methods” is referenced 313 times. More importantly, these
frequently referenced Web resources are often referenced together in the same discussion
threads. We hypothesize that taken in aggregate, Stack Overflow discussions can be mined
to recommend community-recognized, correlated Web resources.

To validate our hypothesis, we conduct a large-scale exploratory study of 5.5 millions
hyperlinks referenced on Stack Overflow, to investigate its hyperlink dissemination patterns.
We observe that 1) Stack Overflow discussions contain a large number of hyperlinks, that
cover a variety of online programming resources (e.g., official APIs, tutorials, code exam-
ples, forum discussions); 2) These hyperlinks are widely referenced in questions, answers
and comments; 3) Millions of discussion threads contain two or more hyperlinks; 4) The
presence of hyperlinks in posts correlates with the community votes on the posts.

Our exploratory study suggests the potential of Stack Overflow data for recommending
correlated Web resources. Based on our observations of hyperlink dissemination patterns,
we design an item-based collaborative filtering approach for recommending correlated Web
resources. The recommendation takes advantage of multiple features, such as the location in
which hyperlinks are referenced (i.e., in question, answer, or comment), the co-occurrence

8http://stackoverflow.com/questions/15425282/singleton-pattern-interview

http://stackoverflow.com/questions/15425282/singleton-pattern-interview


1702 World Wide Web (2019) 22:1699–1725

frequency of hyperlinks, and the votes on the posts (or comments) in which hyperlinks
are referenced. Given a set of Stack Overflow discussion threads, our approach produces
a Hyperlink Associative Network (HAN) to model the community-recognized, correlated
Web resources. Based on this HAN, our approach recommends the top-k most correlated
Web resources.

To evaluate our approach, we mine a HAN using 6 years of Stack Overflow data (July
2008 - September 2014) and evaluate the accuracy of the recommendation using 9 months
of Stack Overflow data (October 2014 - June 2015) as testing dataset. Our evaluation shows
that our technique recommends correlated Web resources with satisfactory precision and
recall in an open setting. As part of this work, we implement a proof-of-concept tool Lin-
kLive9. A user study with 6 participants suggests that our LinkLive tool can recommend
helpful and diverse Web resources.

The remainder of the paper is organized as follows. Section 2 reviews related work.
Section 3 reports our exploratory study of hyperlink dissemination patterns on Stack
Overflow. Section 4 discusses our item-based collaborative filtering approach. Section 5
introduces our LinkLive tool. Section 6 reports the empirical evaluation of our approach.
Section 7 reports a user study to evaluate the helpfulness and diversity of LinkLive recom-
mendation. Section 8 discusses our findings. Section 9 concludes the work and outlines our
future plan.

2 Related work

We first review recommendation systems in general, and then review related work from the
aspect of recommendation systems for software engineering.

2.1 Recommendation systems

Content-based recommendation systems Content-based recommendation systems
make recommendations by analyzing the content of textual information and finding regu-
larities in the content [72], but do not exploit users’ rating history. Content-based systems
are designed mostly to recommend text-based items [1], which can be divided into two
categories: keyword-based systems and ontology-based systems.

In most content-based systems, item descriptions are textual features extracted from Web
pages, emails, news articles, or product descriptions. The content in these systems is usu-
ally described with keywords. For example, Fab system [7] represents Web page content
with 100 most important words and then recommends Web pages to users based on these
keywords. Similarly, the Syskill & Webert system [59] represents documents with the 128
most informative words. Besides Web systems, keyword-based recommender systems are
also widely used in other applications, such as news filtering [2, 69], book recommenda-
tion [51] and music recommendation [17]. Some simple retrieval models such as keyword
matching [81] and the vector space model with TF-IDF weighting [71] are widely used in
these keyword-based recommendation systems.

To better understand text-based items, some content-based systems learn more accu-
rate item profiles that contain references to concepts defined in external knowledge bases.

9The LinkLive tool is implemented as a Web browser add-on, based on GreaseMonkey/TamperMonkey
technique. It can be downloaded at http://128.199.241.136:9000/download/.

http://128.199.241.136:9000/download/


World Wide Web (2019) 22:1699–1725 1703

For examples, SiteIF [46] involves MultiWordNet, a multilingual lexical database, in rep-
resenting documents; ITR system [21] integrates WordNet lexical ontology in the process
of learning item profiles. Recently, Freebase, DBpedia and Google knowledge graph are
incorporated in content-based recommendations [32, 52, 89]. In summary, these studies
incorporate either linguistic or external knowledge to provide better and more accurate
results compared to keyword-based methods.

Collaborative filtering Collaborative filtering (CF) uses the known preferences of a
group of users/items to make recommendations or predictions of the unknown preferences
for other users/items [72]. The main difference between CF and content-based recommen-
dation systems is that CF uses the user-item interaction data to make predictions, while
content-based systems rely on extracted features of users or items for predictions. According
to [14], CF approaches can be categorized as: memory-based CF and model-based CF.

Memory-based CF methods usually use similarity metrics to obtain the distance between
two users, or two items, based on each of their ratios [12]. Memory-based CF methods can
be further divided into item-based CF and user-based CF. Item-based methods [8, 33] iden-
tify other items that are similar to the items that a user has liked or rated. User-based methods
[48, 86] first find similar users based on users’ rating history, then recommend items by
comparing with the preferences of similar users. Similarity computation between items or
users is a critical step in memory-based CF algorithms. Some most popular approaches
to similarity computation are correlation-based [48], cosine-based [18] and conditional
probability-based [30] similarity.

Model-based CF methods use the collection of ratings to learn a model, which is then
used to make intelligent recommendations for test data or real-world data. Many algorithms,
such as Bayesian model [56], matrix factorization [45], fuzzy system [85], genetic algorithm
[4], clustering model [70], and dependency network [76], have been investigated to solve
the shortcomings [12] of memory-based CF algorithms. In any recommender system, the
number of ratings already obtained is usually very small compared to the number of ratings
that need to be predicted. Some studies [54, 55] have developed dimensionality reduction
techniques to address the problem of sparsity.

Studies show that item-based CF is more robust in the face of user interest changes [20,
43], and is less demanding on the quality of search queries [57, 65]. Therefore, we adopt
item-based CF in this work. Unlike traditional recommendation systems that make recom-
mendations by exploiting explicit ratings of items, our approach assumes that the frequency
of hyperlink mentions and the votes on the mentioning posts implicitly reflect users’
preferences over Web resources.

Hybrid recommendation systems Some recommendation systems use a hybrid
approach by combining collaborative and content-based methods to make recommenda-
tions. Hybrid recommender system can be grouped into 4 categories: 1). implementing
collaborative and content-based methods separately and combining their predictions [10];
2). incorporating some content-based characteristics into a collaborative approach [7, 49];
3). incorporating some collaborative characteristics into a content-based approach [53];
4). constructing a general unifying model that incorporates both content-based and col-
laborative characteristics [66]. In conclusion, hybrid systems are designed to avoid certain
limitations of content-based and collaborative systems.

Deep learning based recommendation systems In recent years, deep learning has
achieved tremendous successes on speech recognition, computer vision, and natural



1704 World Wide Web (2019) 22:1699–1725

language processing. Deep learning is able to effectively capture the non-linear and latent
user-item relationships in recommendation systems [92]. For example, neural network-
based collaborative filtering [27] is a general framework that learns the user-item interaction
function using multilayer perceptron. Deep factorization machine [26] is able to model
the high-order feature interactions via deep neural network and low-order interactions
via factorization machine. Some other systems, such as those based on autoencoder [67],
convolutional neural network [24], recurrent neural network [28], restricted boltzmann
machine [63], and generative adversarial network [83], are developed to further enhance
recommendation quality.

Although existing studies have investigated the effectiveness of deep learning in recom-
mendation systems, they heavily rely on large-scale training data and do not utilize various
side information (e.g., votes and location in our study) in a comprehensive manner. On the
contrary, our approach is applicable to data on different scales and incorporates more side
information in correlation-based item recommendation.

2.2 Recommendation systems for software engineering

Recommendation systems specific to software engineering are emerging to assist developers
in a wide range of activities. Example activities include guiding software changes [94],
recommending code examples [29], assisting code navigation [31], and augmenting API
documentation [38–40, 78].

Social content in software engineering domain, such as Q&A discussions on Stack
Overflow, has recently gained much research interest [3, 37, 79]. Some work focuses on
content recommendation in Q&A sites. For example, Pedro et al. [64] propose RankSLDA,
recommending question for collaborative Q&A systems. Wang et al. [80] present a tag
recommendation system to improve the quality of tags in software information sites.
Stack Overflow can also recommend related posts based on topic similarity [3]. Some
work attempts to integrate social content into software development environments. For
example, Ponzanelli et al. [61] present Prompter, a self-confident recommender sys-
tem, that automatically searches and identifies relevant Stack Overflow discussions, given
the code context in IDE. Zagalsky et al. [91] present a code search and recommenda-
tion tool which brings together social media and code recommendation systems. Others
attempt to link information across different information sources. For example, Subra-
manian et al. [73] present a live API documentation tool, to link the official API
documentation with user-generated content on Stack Overflow. Bagheri et al. [6] pro-
pose a semantic linking technique to recommend content from Reddit for Stack Overflow
questions.

Existing studies mainly focus on recovering traceability between source code, Q&A dis-
cussions, and other forms of social content, to facilitate relevant information access. In
contrast, our focus in this study is on mining hyperlink correlations in Q&A discussions to
recommend correlated Web resources.

3 An exploratory study of hyperlinks on stack overflow

Our technique relies on the presence of hyperlinks in Stack Overflow discussions, and the
presence of potential correlation patterns among these hyperlinks. Thus, an investigation is
warranted if hyperlinks on Stack Overflow are a potential source for discovering correlated
Web resources. We investigate three research questions:



World Wide Web (2019) 22:1699–1725 1705

Table 1 Top-20 most referenced domains

Rank #Citations Domain Rank #Citations Domain

1 1,916,405 stackoverflow.com 11 140,586 apple.com

2 772,453 microsoft.com 12 137,706 python.org

3 667,334 jsfiddle.net 13 124,171 apache.org

4 567,959 github.com 14 112,318 mozilla.org

5 370,405 wikipedia.org 15 101,733 sourceforge.net

6 341,174 google.com 16 83,880 stackexchange.com

7 264,459 php.net 17 79,181 w3.org

8 240,949 oracle.com 18 75,616 mysql.com

9 177,417 android.com 19 65,701 msdn.com

10 172,606 jquery.com 20 63,170 facebook.com

– RQ1: What hyperlinks are referenced? Where are they referenced?
– RQ2: How frequent a hyperlink is referenced? How frequent two or more hyperlinks

are referenced together in the same discussion thread?
– RQ3: Does the presence of hyperlinks in posts correlate with number of votes received?

3.1 Dataset

We use Stack Overflow data dump (July 2008 to September 2014) in this exploratory study.
The same dataset is also used as the training data for the evaluation of our technique. The
dataset contains 7,990,787 questions, 13,684,117 answers, and 32,506,636 comments. We
consider a question and all its answers and comments as a discussion thread. Thus, we have
7,990,787 discussion threads in the dataset, i.e., the same as the number of questions. We
extract hyperlinks in questions, answers and comments from the href HTML tag. As many
hyperlinks in comments are referenced as plain text, we also use regular expressions to parse
plain text and to extract hyperlinks.

3.2 RQ1: what and where

We extract 5,522,886 distinct hyperlinks from the dataset. These hyperlinks are from
234,815 distinct domains. Table 1 lists the top-20 most referenced domains in Stack
Overflow discussions. Observe that the domains cover a variety of online programming
resources, including official API documents, tutorial websites, code example sites, code
repositories, Wikipedia, and forum discussions, etc. Our results are consistent with earlier
studies on hyperlink sharing practices on Stack Overflow [23].

Tables 2 and 3 summarize the statistics of hyperlinks that are referenced in questions,
answers, and comments, respectively. We can observe that hyperlinks widely present in
questions, answers, and comments. Stack Overflow encourages users to include hyperlinks
to relevant Web resources in their discussions10. This explains the wide present of hyper-
links on Stack Overflow. Therefore, to analyze hyperlinks on Stack Overflow, we must
consider all components that may contain hyperlinks in the discussion, e.g., questions,
answers, and comments.

10http://stackoverflow.com/help/how-to-answer

http://stackoverflow.com/help/how-to-answer


1706 World Wide Web (2019) 22:1699–1725

Table 2 Statistics of questions/answers/comments having hyperlinks

#Questions #Answers #Comments

Total number 7,990,787 13,684,117 32,506,636

Contain hyperlinks 1,315,053 (16.46%) 4,457,576 (32.57%) 5,788,648 (17.81%)

3.3 RQ2: reference and co-occurrence frequency

Figure 2 plots hyperlink citation distribution and domain citation distribution. The chart
shows the percentage of hyperlinks (or domains) that have been referenced for a certain
number of times. About 21.83% hyperlinks and about 50.14% domains are referenced at
least twice in discussions. The power-law distribution of hyperlink citations indicates that
the hyperlinks shared on Stack Overflow are largely stable, although the number of dis-
tinct hyperlinks keeps growing. That is, a small portion of frequently referenced hyperlinks
attracts a large portion of developers’ attention. Therefore, the frequency of a hyperlink is
an important indicator of the community’s preference.

Figure 3 shows the distribution of hyperlinks per discussion thread. Observe that 28.65%
of discussion threads (i.e., 2,289,360) contain two or more hyperlinks. This shows that mil-
lions of discussion threads can be a potential source for mining correlated Web resources.
Sharing in the same discussion thread indicates the relatedness among hyperlinks.

3.4 RQ3: hyperlink-vote correlation

Previous studies show that, the presence of hyperlinks in a post is a strong indicator of the
post being more informative [22]. We want to further investigate the correlation between
the presence of hyperlinks in a post and the number of votes it receives. To this end, we
collect 4,596,855 accepted answers in our dataset. We then split these accepted answers into
two groups: group1 (1,640,651 answers) where the accepted answers contain hyperlinks,
and group2 (2,956,204 answers) where the accepted answers do not contain hyperlinks. We
have the null hypothesis H0: There is no statistically significant difference in the number of
votes on the accepted answers from the two groups.

Examination of distribution of number of votes on answers shows that the distribu-
tion does not obey normal distribution. Therefore, we use non-parametric statistical tests
to study the significance of the vote differences in the two groups. In particular, we use
the KolmogorovSmirnov test (KS-test) [41]. The KS-test has the advantage of making no
assumption about the distribution of data. p-value of the KS-test result is below 0.001.
Therefore, we reject the null hypothesis. In other words, there is a statistically significant
difference in the number of votes on the accepted answers with and without hyperlinks.
This analysis suggests that number of votes is another important indicator of community’s
preference of hyperlink.

Table 3 Statistics of the sources of distinct hyperlinks

Location of hyperlink Questions Answers Comments All

#Distinct hyperlinks 1,379,007 3,120,816 1,913,474 5,522,886



World Wide Web (2019) 22:1699–1725 1707

Number of Hyperlink Citations
100 101 102 103 104 105

P
er

ce
nt

ag
e 

of
 H

yp
er

lin
ks

10-6

10-4

10-2

100

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

80%

(a) Hyperlink distribution
Number of Domains

100 102 104 106

P
er

ce
nt

ag
e 

of
 D

om
ai

ns

10-5

10-4

10-3

10-2

10-1

100

1 2 3 4 5 6 7 8 9 10
0

20%

40%

60%

(b) Domain distribution

Figure 2 The hyperlink and domain citation distribution. The absolute numbers are plotted in log scale, and
the percentages are plotted in bar chart

4 The linklive approach

Our exploratory study shows that hyperlinks on Stack Overflow are a good source for
mining correlated Web resources. The analysis also leads to the design of our item-based
collaborative filtering approach for mining correlated Web resources. In this work, we con-
sider a hyperlink as a Resource-of-Interest (ROI). Given a hyperlink (referred to as a seed
hyperlink or seed ROI), our goal is to recommend top-k correlated Web resources (referred
to as recommended hyperlinks or recommended ROIs) that are highly recognized by the
Stack Overflow community.

4.1 Hyperlink associative network

We construct a Hyperlink Associative Network (HAN) to model correlated hyperlinks on
Stack Overflow as follows. The notations used in this paper are listed in Table 4.

Definition 1 (Discussion Thread) A discussion thread consists of a question and all its
answers in chronological order. Both questions and answers are also known as posts. A post
may have zero or more comments.

Number of hyperlinks per thread
0 1 2 3 4 >=5

P
er

ce
nt

ag
e 

of
 th

re
ad

s(
%

)

0

10

20

30

40

50

Figure 3 Distribution of number of hyperlinks per discussion thread



1708 World Wide Web (2019) 22:1699–1725

Table 4 The notations of this paper

Symbol Description

T A discussion thread

hs A seed ROI

ht A candidate ROI

H The set of distinct hyperlinks H = hs

⋃
ht

Ghs = (V ,E) Hyperlink Co-occurrence Graph for hs , Vertex V , Edge E

es,t The edge from node hs to node ht

HAN = (H,X) Hyperlink Associative Network. HAN = ⋃
Ghs

ωs,t The weight of edge es,t in HAN

Ses,t The score of edge es,t in E

S′
es,t

The normalized score of edge es,t in E

Sp The score vector of posts (question and answers) in the discussion thread T

Sc The score vector of comments of a post in the discussion thread T

Definition 2 (ROI Location and Location Type) The question, answer, or comment in
which an ROI is referenced is the location of the ROI. Each of which is also known as the
location type.

Figure 4 Hyperlink co-occurrence graph. Thread2 does not contain the seed hyperlink, and thus is excluded
in this cascade. The different arrows indicate different associative-edge weights



World Wide Web (2019) 22:1699–1725 1709

Definition 3 (ROI Cascade) An ROI cascade consists of all the discussion threads that
reference a seed ROI in chronological order.

In our model, a discussion thread is the basic information unit. Figure 4 illustrates multi-
ple discussion threads, from Thread1 to ThreadM, in chronological order. Let H be the set
of distinct hyperlinks in all discussion threads. For seed ROI hs ∈ H , we construct an ROI
cascade, as shown in Figure 4, where the seed ROI is highlighted in red. The seed ROI is
referenced in multiple locations including questions q of Thread1 and ThreadM, answer A2
in Thread3, and a comment to answer A4 in Thread4. Note that, Thread2 does not contain
the seed ROI, and thus is excluded in the ROI cascade.

Definition 4 (Hyperlink Co-occurrence Graph Ghs ) A Ghs = (V ,E) is a directed graph
where vertex set V is the set of all distinct hyperlinks referenced in ROI cascade of seed ROI
hs , and a co-occurrence edge es,t ∈ E represents the co-occurrence of the seed hyperlinks
hs and the other hyperlink ht in the same discussion thread. ht is referred to as candidate
hyperlink or candidate ROI. The edge es,t ∈ E is indexed by the locations of hs and ht .
The edge has a score indicating the number of votes on the post (i.e., question or answer)
or comment in which ht is referenced.

Given the ROI cascade of seed ROI hs , the edge set E of graph Ghs is constructed as
follows. For each discussion thread T in the ROI cascade,

– If the location of hs is a post (i.e., question or answer), then for each distinct hyperlink
ht in the posts of the discussion thread T , a co-occurrence edge es,t (node hs to node
ht ) is added to E. The red edges in Thread1, Thread3, and ThreadM and the orange
edge between the seed ROI and url6 in question Q of Thread3 illustrate this scenario.
The seed ROI hs and a candidate ROI ht may appear in the same post, e.g., url7 in
answer A2 of Thread3. If a candidate ROI ht appears in n (n ≥ 2) different posts, e.g.,
url13 in answers A1 and A4 of ThreadM, then n different edges will be added.

– If the location of hs is a post, then for each distinct hyperlink ht in the comments of
the post, a co-occurrence edge es,t (node hs to node ht ) is added to E. The purple
edges between the seed ROI and url1 and url2 in comments of question q of Thread1
illustrate this scenario. Note that we do not consider hyperlinks in comments of other
posts (such as the one in a comment of A4 of Thread1) as candidate ROIs. The rationale
is that the comments are usually related to only the post being commented.

– If the location of hs is a comment, then for each distinct hyperlink ht in the comments
of the same post and in the post being commented, a co-occurrence edge es,t (node hs

to node ht ) is added to E. The orange and purple edges between the seed ROI and url10
in answer A4 of Thread4 and url11 and url12 in comments of answer A4 illustrate this
scenario. Again, we do not consider hyperlinks in other posts (such those in answers
A1 and A2 of Thread4) as candidate ROIs of the seed ROI in a comment of a post.

Definition 5 (Hyperlink Associative Network HAN) A HAN = (H,X) is a directed
graph where vertex set H is the set of hyperlinks in all discussion threads, and an associative
edge es,t ∈ X if there exist one or more co-occurrence edges es,t ∈ E (E is the edge set of
Ghs ). That is, HAN = ⋃Ghs for all hs and H = ht

⋃
hs .

Each associative edge es,t ∈ X has a weight , to be described next. This weight measures
the correlation similarity between seed ROI hs and a candidate ROI ht .



1710 World Wide Web (2019) 22:1699–1725

4.2 Associative-edge weight computation

The weight of associative edge es,t ∈ X (denoted by ωs,t ) is computed based on the
score of the corresponding co-occurrence edges es,t ∈ E (denoted by Ses,t ) in Ghs . For
a candidate ROI ht of seed ROI hs in a discussion thread, the score of posts (or com-
ments) in which the ht is referenced reflects the competition among the candidate ROIs
in the discussion thread. The intuition is that ROIs in high-score posts (or comments)
would be more valuable to users than those in low-score posts (or comments). Thus, a
naive method to compute ωs,t is to sum up Ses,t of all co-occurrence edges es,t ∈ E, i.e.,
ωs,t = ∑

es,t∈E Ses,t . We refer to this straightforward method as the baseline method in our
evaluation.

We now design an enhanced weight computation method (referred to as the enhanced
method in our evaluation) based on the following two intuitions. First, the correlation
between a seed ROI hs and a candidate ROI ht is different when hs is referenced in dif-
ferent types of locations, i.e., question, answer, and comment. This intuition is based on
the consideration that the asker is very likely to follow up all answers, but an answerer or
a commenter may not pay much attention to answers or comments from others. Second,
scores of posts or comments vary greatly from one discussion thread to another. Thus, it
would be necessary to normalize the scores within each discussion thread so that the scores
are comparable across different discussion threads.

Based on above two intuitions, we normalize the score of co-occurrence edge es,t ∈ E

for the three different types of locations of hs as follows. We denote the normalized score
as S′

es,t
.

hs is referenced in question The seed ROI in question Q of Thread1 and ThreadM in
Figure 4 illustrate this scenario. We only consider the competition among the candidate
ROIs ht in comparable type of location, i.e., ht in posts or ht in comments, because the
score of posts and comments can vary greatly in scale and most of comments have no score.

Let Sp be the score vector of all posts (question and answers) of the discussion thread T .
If ht is referenced in a post in T , then the normalized score of the edge es,t ∈ E is:

S′
es,t

= Ses,t − min(Sp)

max(Sp) − min(Sp)
(1)

That is, S′
es,t

is a value in [0, 1] that reflects the relative score of ht compared with that
of other candidate ROIs of the hs in the posts of the discussion thread T . If max(Sp) =
min(Sp) = 0, we set S′

es,t
= 0.1. The score of the red edges in Thread1 and ThreadM in

Figure 4 is normalized using (1).
Let Sc be the score vector of all comments of question q in which hs is referenced in

discussion thread T . If ht is referenced in a comment of question q, then the normalized
score of edge S′

es,t
is:

S′
es,t

= Ses,t − min(Sc)

max(Sc) − min(Sc)
(2)

If max(Sc) = min(Sc) = 0, we set S′
es,t

= 0.1. The score of the purple edges in Thread1
in Figure 4 is normalized using (2).

hs is referenced in answer The seed ROI in answer A2 of Thread3 in Figure 4 illustrates
this scenario. Let the answer be in discussion thread T . If ht is referenced in question q

of T (e.g., the orange edge between the seed ROI and url6 in question Q of Thread3), we



World Wide Web (2019) 22:1699–1725 1711

set S′
es,t

= 1. This is based on the consideration that the information in an answer should
be directly related to the information in the question. If ht is referenced in an answer of
discussion thread T (e.g., the red edges between seed ROI and url7, url8 and url9 in
Thread3), we compute S′

es,t
using the (1). If ht is referenced in a comment of an answer in

which hs is referenced, we compute S′
es,t

using the (2).

hs is referenced in comment The seed ROI in a comment of answer A4 of Thread4
in Figure 4 illustrates this scenario. If ht is referenced in a post (A4 of Thread4) being
commented (e.g., the orange between seed ROI and url19 in answer A4 in Thread4),
we set S′

es,t
= 1. This is based on the consideration that the information in a com-

ment should be directly related to the information in the post being commented. If ht

is referenced in the comments of the same post (e.g., the purple edges between seed
ROI and url11 and url12 in the comments of answer A4 of Thread4), we compute S′

es,t

using (2).
Once we normalize the score of co-occurrence edge es,t ∈ E for all discussion threads,

we compute the normalized weight of associative edge es,t ∈ X as ωs,t = ∑
es,t∈X S′

es,t
.

4.3 ROI recommendation

The HAN mined from a set of discussion threads serves as the underlying model for
recommendation of correlated Web resources. Given an ROI, if it appears in the HAN,
we recommend the top-k candidate ROIs in the HAN that have the highest associative
edge weight (e.g., correlation similarity) with the given ROI as the recommended ROIs.
Formally, given an ROI hq , we retrieve top-k candidate ROIs from HAN = (H,X)

by

ht = argmax
ht∈H

∑

eq,t∈X
S′

eq,t

s.t. eq,t ∈ X
(3)

where eq,t is a co-occurrence edge representing the co-occurrence of the seed hyperlink hq

and the other hyperlink ht in the same discussion thread.



1712 World Wide Web (2019) 22:1699–1725

Figure 5 The LinkLive Tool. The recommendation is triggered when mouse hovers over hyperlink
‘singleton’

Algorithm 1 summarizes the procedure of ROI recommendation, which consists of an
offline phase and an online phase. The offline phase first constructs co-occurrence graph
for each seed ROI, then computes the associative-edge weights. The output of the offline
phase is an HAN. Given an ROI, the online phase retrieves top-k ROIs from the HAN . We
assume that there are n seed ROIs in our corpus and each ROI has m associated ROIs in its
ROI cascade. The time complexity of the offline phase is O(nm). For the online phase, the
time complexity of extracting subgraph is O(n). The time complexity of ranking edges is
O(m log m). Thus, the total time complexity of online phase is O(n + m log m).

5 The linklive tool

We implement a proof-of-concept tool of our LinkLive approach11. The backend hyperlink
associative network (i.e., hyperlink correlation model) is mined from training data, which
is the Stack Overflow data dump (July 2008 to September 2014) (see Section 3). When a
user visits a Web page or mouse hovers over a hyperlink in the Web page, the LinkLive tool
searches for hyperlinks from the backend model. If the hyperlink is found in the backend,
and the hyperlink has been referenced 5 times or more in the training dataset, the tool
recommends top-10 correlated Web resources for the given hyperlink. We set a minimal

11Video demonstration at https://youtu.be/PvgzJ-fslGs
The tool is available for downloading at http://128.199.241.136:9000/download/

https://youtu.be/PvgzJ-fslGs
http://128.199.241.136:9000/download/


World Wide Web (2019) 22:1699–1725 1713

reference frequency of the seed hyperlink for triggering the recommendation, because we
observe that for seed hyperlinks that are referenced fewer than 5 times, the co-occurring
hyperlinks are ad-hoc.

Figure 5 shows the LinkLive recommendation when mouse hovers over hyperlink (https://
en.wikipedia.org/wiki/Singleton pattern) in a Stack Overflow question12. In addition to the
recommendation of correlated Web resources, the LinkLive tool also shows a bar chart of
citation history for the seed hyperlink and each recommended hyperlink.

6 Evaluation of the linklive recommendation

We evaluate LinkLive from two perspectives: accuracy and reliability.

– RQ4: How accurate is the LinkLive recommendation of correlated Web resources com-
pared with user-explicitly-referenced Web resources in Stack Overflow discussions?

– RQ5: How does the time elapsed after modeling training affect the accuracy of the
LinkLive recommendation?

6.1 Experiment setup

6.1.1 Testing dataset

To answer the above research questions, we use Stack Overflow data dump (October 2014 to
June 2015) as the testing dataset. The testing dataset contains 1,835,754 discussion threads
and 1,384,063 distinct hyperlinks. Similar to the training dataset, 28.36% of discussion
threads (or 520,619) in the test dataset have two or more hyperlinks.

We build the “ground truth” to answer research questions RQ4 and RQ5 from these
28.36% discussion threads as follows. We collect the discussion threads in the testing
dataset that reference at least two hyperlinks and at least one of them can trigger Lin-
kLive recommendation. 260,141 discussion threads in the testing dataset satisfy this criteria,
and 92,800 hyperlinks can trigger LinkLive recommendation. These 92,800 hyperlinks are
referred to as seed hyperlinks in this evaluation. Given one of the 260,141 discussion threads
and a seed hyperlink in the discussion thread, we collect all the co-occurring hyperlinks
for the seed hyperlink in the discussion thread in the same way as we build Hyperlink
Co-occurrence Graph (see Section 4.1). We consider this set of co-occurring hyperlinks
as the ground truth of correlated Web resources for the given seed hyperlink in the test
data. Hereafter, we refer to this ground truth as user-explicitly-referenced correlated Web
resources.

6.1.2 Metrics

We use two metrics to evaluate the accuracy of LinkLive recommendation: Precision@k

and Recall@k (Pr@k and Re@k for short). k = {1, 5, 10, 20, 30} is the number ofrec-
ommended Web resources. Let Rk

hs
be the set of top-k recommended Web resources for a

12http://stackoverflow.com/questions/23360052

https://en.wikipedia.org/wiki/Singleton_pattern
https://en.wikipedia.org/wiki/Singleton_pattern
http://stackoverflow.com/questions/23360052


1714 World Wide Web (2019) 22:1699–1725

seed hyperlink hs using LinkLive. Let GThs be the set of user-explicitly-referenced corre-

lated Web resources for hs in a discussion thread. Pr@k for hs is
Rk

hs
∩GThs

k
. Re@k for

hs is
Rk

hs
∩GThs

GThs
. We average the precision and recall values over all the 260,141 discussion

threads.

6.2 The accuracy of linklive recommendation

Recall that we have a baseline method and an enhanced method to compute associative
edge weight (the correlation similarity between hyperlinks) for the recommendation of
correlated Web resources (see Section 4.3). In this section, we compare the accuracy of the
recommendation of the two methods using the Precision@K and Recall@K metrics.

6.2.1 Overall performance

Figure 6 reports the Pr@k and Re@k of both baseline and enhanced methods. We observe
that:

– The enhanced method outperforms the baseline method at all different k values for both
precision and recall. This shows that taking into account the location where hyperlinks
are referenced and normalizing scores in discussion threads improves the accuracy of
LinkLive recommendation.

– As expected, precision drops as the value of k increases, while the recall increases
along k increases. The best precision is 9.34% at k = 1 and the best recall is 15.61% at
k = 30. At k = 10, the precision is 3.03% and the recall is 10.86%.

Note that Pr@k is calculated by
Rk

hs
∩GThs

k
. Most discussion threads only contain two

hyperlinks. That is, Rk
hs

∩ GThs = 1 in most cases. Thus, the Pr@k is expected to be very
small. On the other hand, in the testing dataset, 79% of hyperlinks have not been referenced
in the training dataset.

Pr@1 Pr@5 Pr@10 Pr@20 Pr@30
0

0.02

0.04

0.06

0.08

0.1
Enhanced
Baseline

(a) Precision@k

Re@1 Re@5 Re@10 Re@20 Re@30
0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16
Enhanced
Baseline

(b) Recall@k

Figure 6 Overall performance of the LinkLive recommendation



World Wide Web (2019) 22:1699–1725 1715

As discussed in Section 3.3, these hyperlinks do not represent Web resources that the
Stack Overflow community care the most about. However, the presence of such hyper-
links brings down the precision of the recommendation. Furthermore, there are only a small
percentage (about 3.81%) of discussion threads referencing 5 or more hyperlinks. That is,
for over 96% of the 260,141 discussion threads from which we collect the ground truth,
the ground truth contains fewer than 5 user-explicitly-referenced Web resources. Therefore,
even the LinkLive top-k recommendations contain all the user-explicitly-referenced Web
resources, the precision is low when k is 5 or larger.

As the main goal of LinkLive recommendation is to help developers discover correlated
Web resources that they may be interested in, we deem recall to be more important than pre-
cision. The reference of hyperlinks in the test discussion threads can be affected by many
factors, such as variation of question topics, the expertise of askers and answerers. In such
an open-ended setting, our enhanced recommendation method achieves satisfactory and
acceptable recall (10.86% at top 10), on a par with the recall of the state-of-the-art recom-
mendation systems for e-commerce or location-based services reported in the literature [25,
90].

6.2.2 Impact of number of citations

As shown in Figure 2, the distribution of hyperlinks obeys a power-law distribution. It
reveals that most hyperlinks are referenced by a small number of times and a small fraction
of hyperlinks are referenced frequently. In this evaluation, we split the hyperlinks into four
citation levels according to the number of their citations in Q&A discussions: “5 − 50”,
“51 − 100”, “101 − 500” and “> 500” (Table 5). In the testing dataset, the number of seed
hyperlinks at these 4 citation levels are ‘82,190’, ‘5,979’, ‘4,171’ and ‘460’, respectively.
These seed hyperlinks are referenced ‘233,707’, ‘48,130’, ‘79,396’ and ‘59,125’ times in
the testing dataset, respectively.

Tables 6 and 7 show the precision and recall of LinkLive recommendation for seed
hyperlinks at the 4 citation levels. From these two tables, we observe that:

– At all citation levels, the enhanced method outperforms the baseline method.
– Both precision and recall increase as the citation frequency of seed hyperlinks increases.

For seed hyperlinks that are referenced “5−50” times, the precision and recall are worse
than the overall performance. For seed hyperlinks that are referenced “> 500” times,
the enhanced method achieves precision 4.81%@10 and recall 17.61%@10, which is
better than the overall performance.

– Comparing the lowest and highest citation levels “5 − 50” versus “> 500”, the perfor-
mance at citation level “> 500” is significantly better than that of level “5 − 50”. In
most cases, the precision and recall values are doubled between the two levels.

Table 5 Number of Seed ROIs and citations at different citation levels

Citation Levels 5-50 51-100 101-500 >500

#Seed ROIs 82,190 5,979 4,171 460

#Citations 233,707 48,130 79,396 59,125



1716 World Wide Web (2019) 22:1699–1725

Table 6 Precision at different citation levels

Citation Levels 5-50 51-100 101-500 >500

Pr@1 Enhanced 7.02% 9.72% 11.46% 15.31%

Baseline 4.42% 5.24% 7.24% 12.86%

Pr@5 Enhanced 3.31% 4.51% 5.49% 7.05%

Baseline 2.48% 2.83% 3.49% 5.64%

Pr@10 Enhanced 2.25% 2.79% 3.69% 4.81%

Baseline 1.86% 1.93% 2.37% 3.47%

Pr@20 Enhanced 1.56% 1.68% 2.23% 2.27%

Baseline 1.37% 1.40% 1.53% 2.06%

Pr@30 Enhanced 1.23% 1.24% 1.63% 1.98%

Baseline 1.12% 1.13% 1.19% 1.49%

This result suggests that for a seed hyperlink that is more frequently referenced in Q&A
discussions, hyperlinks that previously co-occur with seed hyperlink are very likely to be
referenced again, when the seed hyperlink is referenced again. As such, our approach makes
more accurate recommendation for the seed hyperlinks that are more frequently referenced.
This phenomena can be explained by using preferential attachment theory [15], which is the
key intuition underlying the design of our LinkLive approach.

6.3 The reliability of linklive recommendation

Stack Overflow receives thousands of questions and answers every day. As the data grows
over time, the technology landscape also changes rapidly. LinkLive recommendation relies
on hyperlink correlation patterns in Q&A discussions to make effective recommendation.
The time elapsed after model training may invalidate the patterns learned from the past Q&A
discussions. To study the impact of time elapsed on LinkLive recommendation, we split the

Table 7 Recall at different citation levels

Citation Levels 5-50 51-100 101-500 >500

Re@1 Enhanced 2.81% 3.94% 4.68% 7.25%

Baseline 1.75% 2.09% 2.80% 5.81%

Re@5 Enhanced 6.09% 8.58% 10.12% 13.69%

Baseline 4.64% 5.31% 6.27% 10.86%

Re@10 Enhanced 7.93% 10.46% 13.02% 17.61%

Baseline 6.62% 7.17% 8.42% 12.75%

Re@20 Enhanced 1.39% 12.33% 15.49% 19.87%

Baseline 9.19% 9.70% 10.81% 14.90%

Re@30 Enhanced 11.77% 13.65% 16.83% 21.22%

Baseline 10.76% 11.47% 12.50% 16.14%



World Wide Web (2019) 22:1699–1725 1717

testing dataset into three subsets, each of which contains 3-month data (October 2014 to
December 2014, January 2015 to March 2015, and April 2015 to June 2015). We use the first
3-month data as the baseline to compare the accuracy of LinkLive recommendation with the
second and the third 3-month data. For the three subsets, we collect ‘54,654’, ‘51,076’ and
‘47,722’ seed hyperlinks, respectively, and LinkLive tool recommends ‘181,385’, ‘169,511’
and ‘158,381’ correlated Web resources, respectively. For each subset, we collect the ground
truth and compute Precision@k and Recall@k in the same way as we process the full
testing dataset.

Figure 7 shows Precision@k and Recall@k values (k = 1, 5, 10, 20, 30) for the three
testing subsets. We observe that:

– Both precision and recall deteriorate as the time gap between the training dataset and
the testing dataset increases. However, neither precision nor recall degrade significantly
even after six months of HAN training.

– The time elapsed after model training has bigger impact on precision than on recall.
Precision drops up to 15.4% after three months of model training, up to 20.9% after
six months of model training. Recall drops 9.65% after three months of model training,
15.2% after six months of model training.

7 User study

We perform a user study to evaluate the helpfulness and diversity of LinkLive recommenda-
tion:

– RQ6: Can the LinkLive discover helpful and diverse Web resources for developers in
practice?

Pr@1 Pr@5 Pr@10 Pr@20 Pr@30
0

0.02

0.04

0.06

0.08

0.1

0.12
10/2014 -12/2014
01/2015 - 03/2015
04/2015 - 06/2015

(a) Precision@k

Re@1 Re@5 Re@10 Re@20 Re@30
0

0.05

0.1

0.15

0.2
10/2014 - 12/2014
01/2015 - 03/2015
04/2015 - 06/2015

(b) Recall@k

Figure 7 Performance on the three testing subsets



1718 World Wide Web (2019) 22:1699–1725

7.1 Study design

7.1.1 Participants

We recruit 6 graduate students. All participants have either computer science or computer
engineering background. Participants have 1-3 years of programming experience in popular
programming languages and tools, such as Java, Python, C++, and MySQL.

7.1.2 Data sampling

From the testing dataset, we randomly sample 45 seed hyperlinks that are referenced in 45
best answers (one seed hyperlink per answer) for each hyperlink citation level (“5 − 50”,
“51−100”, “101−500” and “> 500”). We collect in total 180 (45x4) seed hyperlinks for this
study. As the evaluation of the recommended Web resources requires certain background,
we sample hyperlinks that are referenced in the discussion threads that are tagged with
programming techniques (i.e., Java, Python, C++, MySQL) that participants are familiar
with. Each participant is randomly assigned 30 seed hyperlinks to rate the helpfulness and
diversity of recommended Web resources by the LinkLive tool.

7.1.3 Evaluation metrics

For each sampled seed hyperlink, we use the LinkLive tool to recommend the top-10 cor-
related Web resources. We implement a Web application for the participants to evaluate
the recommended Web resources. For each seed hyperlink, the Web application presents
the seed hyperlink, the answer in which the seed hyperlink is referenced, and the top-10
recommended Web resources for the seed hyperlink. Participants are asked to rate each
recommended Web resources in terms of helpfulness and category.

Helpfulness is a 7-point likert scale (1 being least helpful to 7 being most helpful). Par-
ticipants are asked to read carefully the information in the seed hyperlink, the answer in
which the seed hyperlink is referenced, and the recommended Web resources to determine
the level of helpfulness of the recommended Web resources for understanding the answer
and/or the content of the seed hyperlink.

We predefine 5 categories for the Web resources, including official documentation (e.g.,
Java API documentation, jQuery library API), unofficial documentation (e.g., technical
blogs, jsfiddle code examples), Q&A site (e.g., Stack Overflow, Quora), code repository
(e.g., Github, Sourceforage), and encyclopedia (e.g., Wikipedia, Javapedia). Participants are
asked to select one category for each recommended Web resource. They can enter “others”
if they believe none of the predefined categories fit the recommended Web resources, for
example dead links.

7.2 Perceived helpfulness

Among the 1,800 recommended Web resources (10 for each 180 seed hyperlinks), 71.8%
are rated helpful (5=28.7%, 6=24.7%, or 7=18.3%), 12.05% are rated neutral (4), and 13.6%
are rated as unhelpful (1=3.1%, 2=3.0% or 3=7.5%). Among the 13.6% unhelpful resources,
2.4% are dead links (e.g., due to changing URL), and most others are download links or
home pages of API documentation or library, which offer little information.

For each seed hyperlink, we average the helpfulness score of the 10 recommended Web
resources. Figure 8 shows the box plot of the average recommendation helpfulness score for



World Wide Web (2019) 22:1699–1725 1719

Helpfulness score
1 2 3 4 5 6 7

Level 5-50

Level 51-100

Level 101-500

Level >500

Figure 8 Average recommendation helpfulness score at different citation levels

the 45 sampled seed hyperlinks at different levels of hyperlink citation. Observe that there
is no significant difference in the mean perceived helpfulness score at different levels of
hyperlink citation. The mean perceived helpfulness score is slightly above 5 (i.e., moderate
helpful). There is one outlier seed hyperlink at level “> 500”, i.e., http://stackoverflow.com/
help/on-topic which describes questions that can be asked on Stack Overflow. For this seed
hyperlink, 7 of the 10 recommended resources are about the norms or good practices to ask
or answer questions on Stack Overflow. Although the recommend Web resources are very
relevant to the seed hyperlink, the participant deems the recommendation as unhelpful, as
they are not relevant to any specific programming issues.

Figure 9 presents the box plot of the average recommendation helpfulness score for the
30 sampled seed hyperlinks for each participant. We can see that Participant1 has least vari-
ation in his/her ratings, while Participant6 has most variation in his/her ratings. The other
four participants have similar variations in their ratings. Five participants have similar mean
perceived helpfulness score in their ratings (around 5, moderate helpful), while Participant1
have slight higher mean perceived helpfulness score (around 6). For Participant4, there is
one outlier seed hyperlink, i.e., https://docs.python.org/2/library/struct.html. The hyperlink
links to the Python module for conversions between Python values and C structs. Partici-
pant4 gives the score of 2 to 4 recommended Web resources (about audio, abstract syntax
notation, and sqlite3 in Python, and the Wikipedia page for “Don’t Repeat Yourself”), which
makes the average recommendation helpfulness score for this seed hyperlink an outlier.

Figure 9 Average
recommendation helpfulness
score for different participants

Helpfulness score
1 2 3 4 5 6 7

Participant 1

Participant 2

Participant 3

Participant 4

Participant 5

Participant 6

http://stackoverflow.com/help/on-topic
http://stackoverflow.com/help/on-topic
https://docs.python.org/2/library/struct.html


1720 World Wide Web (2019) 22:1699–1725

7.3 Perceived diversity

Figure 10 presents the percentage of different categories of the 1,800 recommended Web
resources for the 180 seed hyperlinks. Among the 1,800 recommended Web resources,
official documentation accounts are about 50.9%, and other types of documentation (i.e.,
encyclopedia (13.6%), unofficial documentation (13.2%), and Q&A site (10.4%)) account
for about 37.2%. Code repository accounts for a small portion (4.5%). Others, including
44 dead links and some downloading links, account for 7.39%. Participants all rate Web
resources in others category as unhelpful.

Among the 180 sampled seed hyperlinks, LinkLive recommends 1 category of Web
resources for only 12.7% (23/180) seed hyperlinks, and recommends 2 or more categories of
Web resources for 87.3% (157/180) seed hyperlinks. For 7 seed hyperlinks, the recommend
Web resources cover all the five categories. For example, one of these 7 seed hyper-
links http://scikit-learn.org/stable/index.html links to Python scikit-learn machine learning
library. LinkLive recommends 5 categories of Web resources, including the Wikepedia
page for regression analysis, the countmotifs.py project on Github, Stack Overflow posts
about machine learning, scikit-learn official documentation about feature extraction, and a
professor home page for a list of handwritten, face, text and speech datasets.

7.4 Threats to validity

Participants indicate that it is straightforward to select category for a recommended Web
resource. However, participants (e.g., Participant1 versus Participant6) exhibit different rat-
ing behaviors for helpfulness of recommended Web resources, because the evaluation of
the helpfulness is based on subjective assessment, and is affected by priori knowledge (or
absence of knowledge) of the participants. A general feedback from the participants is that
it is sometimes difficult to determine the helpfulness of the recommended Web resources
because it depends on the information needs. For a developer looking for some basic knowl-
edge, official documentation and encyclopedia-like information would be very helpful. But
for a developer looking for a bug fix, a code example, a Stack Overflow post would be more

Percentage of 180× 10 recommended web resources
0 10% 20% 30% 40% 50% 60%

Official documentation

Unofficial documentation

Q/A site

Code repository

Encyclopedia

Others

50.94%

13.17%

4.5%

13.61%

7.39%

10.39%

Figure 10 Distribution of categories of recommended Web resources

http://scikit-learn.org/stable/index.html


World Wide Web (2019) 22:1699–1725 1721

helpful. That is, helpfulness is often context-sensitive. Due to these limitations, this study
provides only initial evidence of the helpfulness of the LinkLive recommendation.

8 Discussion

In addition to hyperlinks, Stack Overflow discussions contain many other useful informa-
tion, such as software-specific concepts like machine learning, Observer pattern, software
tools and libraries like Eclipse, Django, and APIs like class names, method names. Several
studies [5, 44, 73], including recent work from our team [87, 88], propose software-specific
named entity recognition techniques to recognize software-specific entities in Q&A discus-
sions and other informal documentations. Once a rich set of software-specific entities has
been recognized, our item-based collaborative filtering approach can be extended to make
recommendation for a variety of entities that developer may be interested in.

An innovation of our approach is that we exploit crowdsourced knowledge in Stack
Overflow (i.e., hyperlink correlation patterns in this work) to support recommendation tasks
beyond Q&A. This is different from existing recommendation systems [3, 35, 58, 60, 77]
which mainly focus on facilitating access to online programming resources or social content
in software development. The crowdsourced knowledge underlying our LinkLive recommen-
dation could be enhanced to deliver entity-centric search services for software developers,
similar to SimilarTech13, AlternativeTo14, or SimilarWeb15. Entity-centric search systems,
such as serendipitous search system [47, 62], direct answers [9, 68], entity-centric recom-
mendation [11, 42], have been actively researched in information retrieval community. Our
work is an attempt along this line of research for software engineering data.

The LinkLive recommendation relies on frequent hyperlink co-occurrences in Q&A
discussions. We are now investigating neural-network-based deep learning techniques
(such as [74, 93]) to mine semantically related Web resources from the discussion con-
text that they are referenced. Neural-network-based techniques have been successfully
applied in many natural language processing applications to learn semantic representa-
tion of words based on the assumption that word with similar meaning tend to present
in similar contexts. We hypothesize that semantically related Web resources could be
referenced in similar discussion contexts, even though they may not be frequently ref-
erenced together in the same discussion threads. Co-occurrence based recommendation
and neural-network based recommendation could be complementary. Furthermore, embed-
ding hyperlinks with the discussion context could enable context-sensitive recommendation
of relevant Web resources. For example, consider this sentence on Stack Overflow: Jave
use java.util.Collections.sort() implementation for ascending order. This sentence creates
a context for the link java.util.Collections.sort() through the surround-
ing words. We then can build two vocabularies: one for English words, and the other
for links to API documentation. Then we use neural language models to generate low-
dimensional, distributed embeddings of words [74]. Neural language models take the
advantage of word order in text documents and capture both syntactic and semantic rela-
tionships between words. In the embedding space, the vectors of terms and APIs with

13https://www.similartech.com/
14http://alternativeto.net/
15http://www.similarweb.com/

https://www.similartech.com/
http://alternativeto.net/
http://www.similarweb.com/


1722 World Wide Web (2019) 22:1699–1725

the same intent have the shortest distance. For example, term “ascending” is close to API
java.util.Collections.sort() in the embedding space.

9 Conclusion and future work

In this paper, we present an item-based collaborative filtering approach for recommend-
ing correlated Web resources like the ones that developers are interested in. Our approach
exploits the fact that correlated Web resources have been frequently referenced in discus-
sions on Stack Overflow. Taken in aggregation, hyperlink correlation patterns can be dis-
covered from Stack Overflow discussions for recommendation of community-recognized,
correlated Web resources. We implement a proof-of-concept tool, named LinkLive, and eval-
uate its recommendation quality in two studies. Our evaluation shows that LinkLive is able
to recommend helpful and diverse correlated Web resources with satisfactory accuracy.

In the future, we will investigate deep learning techniques to discover semantically
correlated Web resources, and extend our approach to recommendation of a variety of
software-specific entities. Especially, API documentation is an important resource for pro-
grammers to learn unfamiliar APIs. Such official API documentation provides information
about functionality, structure, and parameters, but not on specific issues or specific usage
scenarios. On the other hand, programmers often face very specific issues which are not
explicitly stated in software documentation. This mismatch leads to the overwhelming dis-
cussions online. However, waiting for answers from other programmers may take much
time. As a part of the future work from this study, we are investigating this question:
can we answer a programmer’s question by providing a link to the most relevant soft-
ware documentation? To answer this question, we need to bridge the semantic gap between
programming questions and software documentation by taking information from multiple
sources including the online disucssion.

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps
and institutional affiliations.

References

1. Adomavicius, G., Tuzhilin, A.: Toward the next generation of recommender systems: a survey of the
state-of-the-art and possible extensions. IEEE Trans. Knowl. Data Eng. 17(6), 734–749 (2005)

2. Ahn, J.-W., Brusilovsky, P., Grady, J., He, D., Syn, S.Y.: Open user profiles for adaptive news systems:
help or harm? In: Proceedings of WWW, pp. 11–20. ACM (2007)

3. Anderson, A., Huttenlocher, D., Kleinberg, J., Leskovec, J.: Discovering value from community activity
on focused question answering sites: a case study of stack overflow. In: Proceedings of KDD, pp. 850–
858 (2012)

4. Ar, Y., Bostanci, E.: A genetic algorithm solution to the collaborative filtering problem. Expert Syst.
Appl. 61, 122–128 (2016)

5. Baeza-Yates, R., Boldi, P., Chierichetti, F.: Essential Web pages are easy to find. In: Proceedings of
WWW, pp. 97–107 (2015)

6. Bagheri, E., Ensan, F.: Semantic tagging and linking of software engineering social content. Autom.
Softw. Eng. 23(2), 147–190 (2016)

7. Balabanović, M., Shoham, Y.: Fab: content-based, collaborative recommendation. Commun. ACM
40(3), 66–72 (1997)

8. Barragáns-Martı́nez, A.B., Costa-Montenegro, E., Burguillo, J.C., Rey-López, M., Mikic-Fonte, F.A.,
Peleteiro, A.: A hybrid content-based and item-based collaborative filtering approach to recommend tv
programs enhanced with singular value decomposition. Inform. Sci. 180(22), 4290–4311 (2010)



World Wide Web (2019) 22:1699–1725 1723

9. Bernstein, M.S., Teevan, J., Dumais, S., Liebling, D., Horvitz, E.: Direct answers for search queries in
the long tail. In: Proceedings of SIGCHI, pp. 237–246 (2012)

10. Billsus, D., Pazzani, M.J.: User modeling for adaptive news access. User Model. User-Adap. Inter. 10(2-
3), 147–180 (2000)

11. Blanco, R., Cambazoglu, B.B., Mika, P., Torzec, N.: Entity recommendations in Web search. In:
Proceedings of ISWC, pp. 33–48 (2013)

12. Bobadilla, J., Ortega, F., Hernando, A., Gutiérrez, A.: Recommender systems survey. Knowl.-Based
Syst. 46, 109–132 (2013)

13. Brandt, J., Guo, P.J., Lewenstein, J., Dontcheva, M., Klemmer, S.R.: Two studies of opportunis-
tic programming: interleaving Web foraging, learning, and writing code. In: Proceedings of CHI,
pp. 1589–1598 (2009)

14. Breese, J.S., Heckerman, D., Kadie, C.: Empirical analysis of predictive algorithms for collaborative
filtering. In: Proceedings of UAI, pp. 43–52 (1998)

15. Bretherton, I.: Attachment theory: retrospect and prospect. Monographs Soc. Res. Child Develop.
50(1/2), 3–35 (1985)

16. Broder, A.: A taxonomy of Web search. In: Proceedings of SIGIR, vol. 36, pp. 3–10 (2002)
17. Celma, Ò., Serra, X.: Foafing the music: bridging the semantic gap in music recommendation. Web

Semant. Sci. Serv. Agents World Wide Web 6(4), 250–256 (2008)
18. Chowdhury, G.G.: Introduction to Modern Information Retrieval. Facet Publishing, London (2010)
19. Cooley, R., Mobasher, B., Srivastava, J.: Web mining: information and pattern discovery on the World

Wide Web. In: Proceedings of ICTAI, pp. 558–567 (1997)
20. Das, A.S., Datar, M., Garg, A., Rajaram, S.: Google news personalization: scalable online collaborative

filtering. In: Proceedings of WWW, pp. 271–280 (2007)
21. Degemmis, M., Lops, P., Semeraro, G.: A content-collaborative recommender that exploits wordnet-

based user profiles for neighborhood formation. Proceedings of UMAP 17(3), 217–255 (2007)
22. Dou, Z., Song, R., Nie, J.-Y., Wen, J.-R.: Using anchor texts with their hyperlink structure for Web

search. In: Proceedings of SIGIR, pp. 227–234 (2009)
23. Gomez, C., Cleary, B., Singer, L.: A study of innovation diffusion through link sharing on stack overflow.

In: Proceedings of MSR, pp. 81–84 (2013)
24. Gong, Y., Zhang, Q.: Hashtag recommendation using attention-based convolutional neural network. In:

Proceedings of IJCAI, pp. 2782–2788. AAAI Press (2016)
25. Grbovic, M., Radosavljevic, V., Djuric, N., Bhamidipati, N., Savla, J., Bhagwan, V., Sharp, D.: E-

commerce in your inbox: product recommendations at scale. In: Proceedings of KDD, pp. 1809–1818
(2015)

26. Guo, H., Tang, R., Ye, Y., Li, Z., Deepfm, X.H.E.: A factorization-machine based neural network for ctr
prediction. In: Proceedings of IJCAI (2017)

27. He, X., Liao, L., Zhang, H., Nie, L., Hu, X., Chua, T.-S.: Neural collaborative filtering. In: Proceedings
of WWW, pp. 173–182. International World Wide Web Conferences Steering Committee (2017)

28. Hidasi, B., Karatzoglou, A., Baltrunas, L., Tikk, D.: Session-based recommendations with recurrent
neural networks. In: Proceedings of ICLR (2015)

29. Holmes, R., Walker, R.J., Murphy, G.C.: Strathcona example recommendation tool. In: Proceedings of
Software Engineering Notes, vol. 30, pp. 237–240 (2005)

30. Karypis, G.: Evaluation of item-based top-N recommendation algorithms. In: Proceedings of CIKM,
pp. 247–254. ACM, New York (2001)

31. Klemmer, S.R., Sinha, A.K., Chen, J., Landay, J.A., Aboobaker, N., Wang, A.: Suede: a wizard of oz
prototyping tool for speech user interfaces. In: Proceedings of UIST, pp. 1–10. ACM (2000)

32. Krompaß, D., Baier, S., Tresp, V.: Type-constrained representation learning in knowledge graphs. In:
Proceedings of ISWC, pp. 640–655. Springer (2015)

33. Levandoski, J.J., Sarwat, M., Eldawy, A., Mokbel, M.F.: Lars: a location-aware recommender system.
In: Proceedings of ICDE, pp. 450–461 (2012)

34. Li, Y., Lu, L., Xuefeng, L.: A hybrid collaborative filtering method for multiple-interests and multiple-
content recommendation in e-commerce. Expert Syst. Appl. 28(1), 67–77 (2005)

35. Li, H., Zhao, X., Xing, Z., Bao, L., Peng, X., Gao, D., Zhao, W.: amassist: in-ide ambient search of
online programming resources. In: Proceedings of SANER, pp. 390–398 (2015)

36. Li, J., Bao, L., Xing, Z., Wang, X., Zhou, B.: Bpminer: mining developers’ behavior patterns from
screen-captured task videos. In: Proceedings of SAC, pp. 1371–1377. ACM (2016)

37. Li, J., Xing, Z., Ye, D., Zhao, X.: From discussion to wisdom: Web resource recommendation for
hyperlinks in stack overflow. In: Proceedings of SAC, pp. 1127–1133. ACM (2016)

38. Li, J., Sun, A., Xing, Z.: Learning to answer programming questions with software documentation
through social context embedding. Inform. Sci. 448-449, 36–52 (2018)



1724 World Wide Web (2019) 22:1699–1725

39. Li, J., Sun, A., Xing, Z., Han, L.: Api caveat explorer: surfacing negative usages from practice. In:
Proceedings of SIGIR, pp. 1293–1296 (2018). https://doi.org/10.1145/3209978.3210170

40. Li, J., Xing, Z., Kabir, A.: Leveraging official content and social context to recommend soft-
ware documentation. IEEE Transactions on Services Computing. IEEE Early Access (2018),
https://doi.org/10.1109/TSC.2018.2812729

41. Lilliefors, H.W.: On the kolmogorov-smirnov test for normality with mean and variance unknown. J.
Am. Stat. Assoc. 62(318), 399–402 (1967)

42. Lin, T., Pantel, P., Gamon, M., Kannan, A., Fuxman, A.: Active objects: actions for entity-centric search.
In: Proceedings of WWW, pp. 589–598 (2012)

43. Linden, G., Smith, B., York, J.: Amazon.com recommendations: item-to-item collaborative filtering.
IEEE Internet Comput. 7(1), 76–80 (2003)

44. Liu, T.-Y.: Learning to rank for information retrieval. Found. Trend Inform. Retrieval 3(3), 225–331
(2009)

45. Luo, X., Xia, Y., Zhu, Q.: Incremental collaborative filtering recommender based on regularized matrix
factorization. Know.-Based Syst. 27, 271–280 (2012)

46. Magnini, B., Strapparava, C.: Improving user modelling with content-based techniques. In: Proceedings
of the International Conference on User Modeling, pp. 74–83. Springer (2001)

47. Marchionini, G.: Exploratory search: from finding to understanding. Commun. ACM 49(4), 41–46
(2006)

48. McLaughlin, M.R., Herlocker, J.L.: A collaborative filtering algorithm and evaluation metric that
accurately model the user experience. In: Proceedings of SIGIR, pp. 329–336. ACM (2004)

49. Melville, P., Mooney, R.J., Nagarajan, R.: Content-boosted collaborative filtering for improved rec-
ommendations. In: Eighteenth National Conference on Artificial Intelligence, pp. 187–192. American
Association for Artificial Intelligence, Menlo Park (2002)

50. Miliaraki, I., Blanco, R., Lalmas, M.: From Selena Gomez to Marlon Brando: understanding explorative
entity search. In: Proceedings of WWW, pp. 765–775 (2015)

51. Mooney, R.J., Roy, L.: Content-based book recommending using learning for text categorization. In:
Proceedings of the Fifth ACM Conference on Digital Libraries, pp. 195–204. ACM (2000)

52. Nguyen, P.T., Tomeo, P., Di Noia, T., Di Sciascio, E.: Content-based recommendations via dbpedia and
freebase: a case study in the music domain. In: Proceedings of ISWC, pp. 605–621. Springer (2015)

53. Nicholas, I.S.C., Nicholas, C.K.: Combining content and collaboration in text filtering. In: Proceedings
of IJCAI, pp. 86–91 (1999)

54. Nilashi, M., Ibrahim, O.B., Ithnin, N., Zakaria, R.: A multi-criteria recommendation system using
dimensionality reduction and neuro-fuzzy techniques. Soft. Comput. 19(11), 3173–3207 (2015)

55. Nilashi, M., Ibrahim, O., Bagherifard, K.: A recommender system based on collaborative filtering using
ontology and dimensionality reduction techniques. Expert Syst. Appl. 92, 507–520 (2018)

56. Park, M.-H., Hong, J.-H., Cho, S.-B.: Location-based recommendation system using Bayesian user’s
preference model in mobile devices. In: Ubiquitous Intelligence and Computing, pp. 1130–1139.
Springer (2007)

57. Park, S.-T., Pennock, D.M.: Applying collaborative filtering techniques to movie search for better
ranking and browsing. In: Proceedings of KDD, pp. 550–559 (2007)

58. Parnin, C., Treude, C., Grammel, L., Storey, M.-A.: Crowd documentation: exploring the Coverage and
the Dynamics of Api Discussions on Stack Overflow. Georgia Institute of Technology, Tech. Rep (2012)

59. Pazzani, M., Billsus, D.: Learning and revising user profiles: the identification of interesting Web sites.
Mach. Learn. 27(3), 313–331 (1997)

60. Ponzanelli, L., Bacchelli, A., Lanza. M.: Seahawk: stack overflow in the ide. In: Proceedings of ICSE,
pp. 1295–1298 (2013)

61. Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., Lanza, M.: Prompter: a self-confident recommender
system. In: Proceedings of ICSME, pp. 577–580 (2014)

62. Sakai, T., Nogami, K.: Serendipitous search via wikipedia: a query log analysis. In: Proceedings of
SIGIR, pp. 780–781 (2009)

63. Salakhutdinov, R., Mnih, A., Hinton, G.: Restricted Boltzmann machines for collaborative filtering. In:
Proceedings of ICML, pp. 791–798. ACM, New York (2007)

64. San Pedro, J., Karatzoglou, A.: Question recommendation for collaborative question answering systems
with rankslda. In: Proceedings of RecSys, pp. 193–200 (2014)

65. Sarwar, B., Karypis, G., Konstan, J., Riedl, J.: Item-based collaborative filtering recommendation
algorithms. In: Proceedings of WWW, pp. 285–295 (2001)

66. Schein, A.I., Popescul, A., Ungar, L.H., Pennock, D.M.: Methods and metrics for cold-start recommen-
dations. In: Proceedings of SIGIR, pp. 253–260. ACM, New York (2002)

https://doi.org/10.1145/3209978.3210170
https://doi.org/10.1109/TSC.2018.2812729


World Wide Web (2019) 22:1699–1725 1725

67. Sedhain, S., Menon, A.K., Sanner, S., Xie, L.: Autorec: autoencoders meet collaborative filtering. In:
Proceedings of WWW, pp. 111–112. ACM (2015)

68. Seebach, C.: Searching for answers–knowledge exchange through social media in organizations. In:
Proceedings of HICSS, pp. 3908–3917 (2012)

69. Sheth, B., Maes, P.: Evolving agents for personalized information filtering. In: Proceedings of the Ninth
Conference on Artificial Intelligence for Applications, pp. 345–352. IEEE (1993)

70. Shinde, S.K., Kulkarni, U.: Hybrid personalized recommender system using centering-bunching based
clustering algorithm. Expert Syst. Appl. 39(1), 1381–1387 (2012)

71. Singhal, A. et al.: Modern information retrieval: a brief overview. IEEE Data Eng. Bull. 24(4), 35–43
(2001)

72. Su, X., Khoshgoftaar, T.M.: A survey of collaborative filtering techniques. Advan. Artif. Intell. 2009, 4
(2009)

73. Subramanian, S., Inozemtseva, L., Holmes, R.: Live api documentation. In: Proceedings of ICSE,
pp. 643–652 (2014)

74. Tang, D., Wei, F., Yang, N., Zhou, M., Liu, T., Qin, B.: Learning sentiment-specific word embedding for
twitter sentiment classification. In: Proceedings of ACL, vol. 1, pp. 1555–1565 (2014)

75. Tenopir, C., King, D.W.: Communication Patterns of Engineers. Wiley, New York (2004)
76. Tran, T., Phung, D., Venkatesh, S.: Collaborative filtering via sparse markov random fields. Inform. Sci.

369, 221–237 (2016)
77. Treude, C., Barzilay, O., Storey, M.-A.: How do programmers ask and answer questions on the Web?:

Nier track. In: Proceedings of ICSE, pp. 804–807 (2011)
78. Treude, C., Robillard, M.: Augmenting api documentation with insights from stack overflow. In:

Proceedings of ICSE
79. Wang, S., Lo, D., Jiang, L.: An empirical study on developer interactions in stackoverflow. In:

Proceedings of SAC, pp. 1019–1024 (2013)
80. Wang, S., Lo, D., Vasilescu, B., Serebrenik, A.: Entagrec: an enhanced tag recommendation system for

software information sites. In: Proceedings of ICSME, pp. 291–300 (2014)
81. Wang, F.-H., Jian, S.-Y.: An effective content-based recommendation method for Web browsing based

on keyword context matching. J. Inform. Electron. 1(2), 49–59 (2006)
82. Wang, J., De Vries, A.P., Reinders, M.J.: Unifying user-based and item-based collaborative filtering

approaches by similarity fusion. In: Proceedings of SIGIR, pp. 501–508 (2006)
83. Wang, J., Yu, L., Zhang, W., Gong, Y., Xu, Y., Wang, B., Zhang, P., Zhang, D.: Irgan: a minimax game for

unifying generative and discriminative information retrieval models. In: Proceedings of SIGIR, pp. 515–
524. ACM (2017)

84. White, R.W., Roth, R.A.: Exploratory search: beyond the query-response paradigm. Synth. Lect. Inform.
Concepts Retr. Serv. 1(1), 1–98 (2009)

85. Yager, R.R.: Fuzzy logic methods in recommender systems. Fuzzy Sets Syst. 136(2), 133–149 (2003)
86. Ye, M., Yin, P., Lee, W.-C., Lee, D.-L.: Exploiting geographical influence for collaborative point-of-

interest recommendation. In: Proceedings of SIGIR, pp. 325–334. ACM, New York (2011)
87. Ye, D., Xing, Z., Foo, C.Y., Ang, Z.Q., Li, J., Kapre, N.: Software-specific named entity recognition in

software engineering social content. In: Proceedings of SANER, vol. 1, pp. 90–101. IEEE (2016)
88. Ye, D., Xing, Z., Li, J., Kapre, N.: Software-specific part-of-speech tagging: an experimental study on

stack overflow. In: Proceedings of SAC, pp. 1378–1385. ACM (2016)
89. Yu, X., Ma, H., Hsu, B.-J.P., Han, J.: On building entity recommender systems using user click log and

freebase knowledge. In: Proceedings of WSDM, pp. 263–272. ACM (2014)
90. Yuan, Q., Cong, G., Sun, A.: Graph-based point-of-interest recommendation with geographical and

temporal influences. In: Proceedings of CIKM, pp. 659–668 (2014)
91. Zagalsky, A., Barzilay, O., Yehudai, A.: Example overflow: using social media for code recommenda-

tion. In: Proceedings of the Third International Workshop on Recommendation Systems for Software
Engineering, pp. 38–42 (2012)

92. Zhang, S., Yao, L., Sun, A.: Deep learning based recommender system: a survey and new perspectives.
arXiv:1707.07435 (2017)

93. Zhou, G., He, T., Zhao, J., Hu, P.: Learning continuous word embedding with metadata for question
retrieval in community question answering. In: Proceedings of ACL, pp. 250–259 (2015)

94. Zimmermann, T., Dallmeier, V., Halachev, K., Zeller, A.: erose: guiding programmers in eclipse. In:
Proceedings of SPLASH, pp. 186–187 (2005)

http://arxiv.org/abs/1707.07435

	LinkLive: discovering Web learning resources for developers from Q&A discussions
	Abstract
	Introduction
	Related work
	Recommendation systems
	Content-based recommendation systems
	Collaborative filtering
	Hybrid recommendation systems
	Deep learning based recommendation systems


	Recommendation systems for software engineering

	An exploratory study of hyperlinks on stack overflow
	Dataset
	RQ1: what and where
	RQ2: reference and co-occurrence frequency
	RQ3: hyperlink-vote correlation

	The linklive approach
	Hyperlink associative network
	Associative-edge weight computation
	hs is referenced in question
	hs is referenced in answer
	hs is referenced in comment


	ROI recommendation

	The linklive tool
	Evaluation of the linklive recommendation
	Experiment setup
	Testing dataset
	Metrics

	The accuracy of linklive recommendation
	Overall performance
	Impact of number of citations

	The reliability of linklive recommendation

	User study
	Study design
	Participants
	Data sampling
	Evaluation metrics

	Perceived helpfulness
	Perceived diversity
	Threats to validity

	Discussion
	Conclusion and future work
	Publisher's Note
	References


