
API Caveat Explorer: Surfacing Negative Usages from Practice
An API-oriented Interactive Exploratory Search System for Programmers

Jing Li∗, Aixin Sun∗, Zhenchang Xing†, and Lei Han∗
∗School of Computer Science and Engineering, Nanyang Technological University, Singapore

†College of Engineering and Computer Science, Australian National University, Australia
jli030@e.ntu.edu.sg;axsun@ntu.edu.sg;zhenchang.xing@anu.edu.au;tomhanlei@hotmail.com

ABSTRACT
Application programming interface (API) documentation well des-
cribes an API and how to use it. However, official documentation
does not describe “how not to use it” or the different kinds of errors
when an API is used wrongly. Programming caveats are negative
usages of an API. When these caveats are overlooked, errors may
emerge, leading to heavy discussions on Q&A websites like Stack
Overflow. In this demonstration, we present API Caveat Explo-
rer, a search system to explore API caveats that are mined from
large-scale unstructured discussions on Stack Overflow. API Caveat
Explorer takes API-oriented queries such as “HashMap” and retrie-
ves API caveats by text summarization techniques. API caveats are
represented by sentences, which are context-independent, promi-
nent, semantically diverse and non-redundant. The system provides
a web-based interface that allows users to interactively explore the
full picture of all discovered caveats of an API, and the details of
each. The potential users of API Caveat Explorer are programmers
and educators for learning and teaching APIs.

ACM Reference Format:
Jing Li∗, Aixin Sun∗, Zhenchang Xing†, and Lei Han∗. 2018. API Caveat
Explorer: Surfacing Negative Usages from Practice: An API-oriented In-
teractive Exploratory Search System for Programmers. In SIGIR ’18: The
41st International ACM SIGIR Conference on Research and Development in
Information Retrieval, July 8–12, 2018, Ann Arbor, MI, USA. ACM, New York,
NY, USA, 4 pages. https://doi.org/10.1145/3209978.3210170

1 INTRODUCTION
Application programming interfaces (APIs) are foundations of soft-
ware development [3, 6, 9]. To program to an API, programmers
need to know not only “how to use an API”, but also “how not to
use the API”. Table 1 lists three example negative usages of APIs
extracted from Stack Overflow1, a popular Q&A website for topics
in programming. In this demonstration, we refer to such negative
usages as API caveats.

Especially, API documentation is an important resource for pro-
grammers to learn unfamiliar APIs. By providing important infor-
mation about functionality, parameters and usage scenarios of an

1https://stackoverflow.com/

Permission to make digital or hard copies of part or all of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for third-party components of this work must be honored.
For all other uses, contact the owner/author(s).
SIGIR ’18, July 8–12, 2018, Ann Arbor, MI, USA
© 2018 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-5657-2/18/07.
https://doi.org/10.1145/3209978.3210170

Table 1: Examples of API caveats.

API Types API caveats extracted from Stack Overflow

HashMap “Don’t use a HashMap if you are going to have
multiple threads, use a ConcurrentHashMap
instead.”

JTextArea “JTextArea is not a component designed for
styled text.”

ActionListener “Inner classes, such as yourActionListener, can-
not access non-final variables from the scope
that contains it.”

API, official API documentation often does a good job at explaining
“how to use an API” [9]. However, API documentation does not
mention API caveats as it is hard to predict the individual practical
use cases of APIs. For example, Java class JTextArea (the second
example in Table 1) is designed to display plain text only; as such, it
does not support styled text. Unfamiliar with this class, a program-
mer may wonder why it fails to display styled text. An effective
way of seeking solution is to post a question on Stack Overflow, and
wait for suggestions from other programmers. Often, the answers
explicitly point out the overlooked API caveat, as shown in Table 1.

Alternative to official documentation, the Q&A discussions in
fact “document” the API caveats emerging from practical use ca-
ses. On the other hand, the crowd-generated Q&A discussions are
informal, redundant, and sometimes related to very specific use
cases. To discover API caveats from massive noisy discussions, and
to present the discovered API caveats in an organized and concise
form, are both challenging tasks. In our research, we formulate the
task of discovering API caveats as a text summarization task, which
is to find representative sentences for each API caveat.

To the best of our knowledge, API Caveat Explorer is the first
system to tackle the problem of negative usages of APIs. API Caveat
Explorer supports three main functionalities. First, it automatically
surfaces API caveats from large-scale unstructured Q&A discus-
sions using text summarization techniques. Second, it ensures the
sentences representing the discovered API caveats are context-
independent, prominent, semantically diverse, and non-redundant.
While diversity and redundancy are typical requirements in text
summarization tasks, context-independency and prominence are
essential in our task because the discovered API caveats have to
be “common” negative usages, not very specific to some unique
cases, and also be representative. Third, the system provides an API-
oriented search system, which allows users to have a bird’s-eye

Demonstration Papers I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1293

https://doi.org/10.1145/3209978.3210170
https://stackoverflow.com/
https://doi.org/10.1145/3209978.3210170


Figure 1: The system architecture of API Caveat Explorer.
The upper half shows the process ofmining API caveats and
the lower half shows the search function.

view of all discovered caveats of an API, as well as to zoom into
details of a specific caveat.

2 API CAVEAT EXPLORER
Figure 1 illustrates the system architecture of API Caveat Explorer.
We will detail the four major modules in Section 2.1. After that, we
brief evaluation of the system in Section 2.2.

2.1 System Architecture
Given a collection of posts (i.e., questions and answers) from Stack
Overflow, the two modules shown in the upper half of Figure 1
mine all API caveats, and store them in a repository. Specifically,
Candidate Sentence Selector selects the sentences that mention APIs
and with negative expressions, as candidate sentences. The API
Caveat Miner is responsible for discovering desirable API caveats
from the candidate sentences. These processes are offline. The two
modules shown in lower half of Figure 1 support the searching
function. The Exploratory Search Interface provides interactive ex-
ploration of API caveats, that are retrieved by API-oriented Retrieval
module in real time.
Candidate Sentence Selector. In this demonstration, we focus
on classes and interfaces defined in Java SDK as the API types of
interest. The raw sentences are extracted for Stack Overflow that
are tagged with Java. We adopt a name-matching strategy to select
sentences that mention a given API. More specifically, we develop a
software-specific tokenizer to tokenize the sentences. This tokenizer
preserves the integrity of code-like tokens, e.g., java.util.HashMap.
If a token in a sentence matches the full or partial name of an API,
the sentence is considered mentioning the API. When selecting
candidate sentences, variations of API mentions have to be taken
into account. For example, mentions of “HashMap” include “hash
map”, “hashmaps” and “hash-map”, in addition to the one defined
in Java documentation, i.e., HashMap.

As we are looking for negative usages of API, API caveats should
be expressed in sentences containing negative expressions. To this
end, we use a dependency parser to detect negative sentences. De-
pendency parse tree is a directed graph, where nodes represent

words and edges represent dependency relations, e.g., nsubj: nomi-
nal subject, aux: auxiliary, det: determiner, etc.2 We use negation
modifier (i.e., neg) to detect negative expressions. To ensure the
negative expressions are on APIs, we select only negative sentences
whose subject or object is an API of interest.

After API matching and detection of negative expressions, we
obtain a set of candidate sentences from Stack Overflow posts.
API Caveat Miner. Some of the candidate sentences are only me-
aningful with its context, for example, “HashMap cannot be used
here”. We therefore filter out context-dependent sentences, as we
do not expect readers have to dig out the context to understand a
sentence (i.e., a caveat returned by our system). We remove context-
dependent sentences from the candidate sentences, based on a set
of sentence patterns, which are defined from observations made
on the Stack Overflow sentences. The remaining sentences, i.e., the
context-independent sentences for API type x , are referred to as
candidate caveats, denoted by Cx .

The second step is to identify prominent software-specific terms.
An API caveat is usually concerned about software-specific terms
related to the particular API usage, e.g., thread-safe and sort. Identi-
fying prominent terms in Cx helps to distill frequently-overlooked
but important API usage issues. For a term t in a sentence, we use re-
lative entropy to weight its prominence:w(t) = p(t) log p(t )

q(t ) , where
p(t) is the probability of observing t in Cx and q(t) is probability of
observing t in all Stack Overflow posts that are tagged with Java.

Some of the prominent terms could be related closely e.g., multi-
thread and thread-safe. The third step in API caveat miner is to
cluster semantically-related prominent terms to discover semantic
aspects of an API. This will in turn help to discover semantically
diverse caveats. Here, semantic relatedness between terms is me-
asured by term co-occurrence in sentences. Thus, we construct a
term co-occurrence graph for Cx and use Louvain method [2] to
cluster the term graph.

The last step of API caveat miner is to select sentences to repre-
sent each semantic aspect discovered in the earlier step. A semantic
aspect is represented by a cluster of terms (i.e., a term community).
We formulate the selection of desirable caveats as a weighted set
cover problem. Given an API type x , let Tx be a set of N prominent
terms in one of its semantic aspects. The goal is to find a set cover
Ax ⊆ Cx of minimal total cost to cover all terms in Tx , i.e.,

Minimize
∑

si ∈Ax

cost (si ) , subject to
⋃

si ∈Ax

si = Tx (1)

where the costs(si ) is computed from two parts: (i) average value
of the prominence scores of terms in sentence si byw(t), denoted
by prom(si ), and (ii) post score post(si ). The post score is computed
from the user votes of the post that contains sentence si . These two
scores are normalized independently based on their corresponding
maximum and minimal values. Then costs(si ) is a linear combina-
tion of the two scores, i.e., cost(si ) = −α · prom(si ) − β · post(si )
where α and β are the coefficients and α + β = 1.

After sentence selection, for each API, we obtain a few semantic
aspects. Each semantic aspect is represented by a set of prominent
terms, and also a set of sentences. Overall all the sentences selected

2http://universaldependencies.org/en/dep/all.html

Demonstration Papers I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1294

http://universaldependencies.org/en/dep/all.html


Figure 2: API Caveat Explorer screenshots (best viewed in color). The main GUI consists of five components: 1○ The query
input panel. 2○ Interactive modes: FoamTree, Circles, and Fisheye. 3○ Term community, representing a semantic aspect of an
API. 4○ Link to the original post on Stack Overflow. 5○ The sentence detailing the API caveat.

for a given API ensure semantic diversity at aspect level, and ensure
non-redundancy within each semantic aspect.
API-oriented Retrieval.We index the discovered caveats which
mention the same API type as a virtual document. Given a query
issued by a programmer, this module firstly parses the query to
detect the full or partial API name. This module then retrieves all
caveats for the API in query.
Exploratory Search Interface. To facilitate exploration of the
discovered API caveats, we implemented a web interface with three
interactive modes, using d3js3 toolkit and FoamTree4 framework.
The main GUI consists of five components, as indicated on Figure 2.

(1) The query input panel is implemented with an API-aware
auto-complete method, and the matched queries are dis-
played as user-friendly responsive drop-down menu.

(2) The interactive panel provides three modes to explore the
discovered API caveats: FoamTree mode, Circles mode and
Fisheye model, to be detailed shortly.

(3) The term community shows all prominent terms in a cluster.
Each community represents one key semantic aspect of the
API type.

(4) The link to the original post on Stack Overflow, from which
this caveat is extracted, for accessing the discussion thread.

(5) The caveat shows the sentence (i.e., API caveat) discovered
by API Caveat Explorer, which mentions the queried API
and contains negative expressions.

API Caveat Explorer implements three interactive modes, captu-
red in Figure 3. FoamTree mode provides an engaging user expe-
rience with animated transitions and zooming, as an effective way
to explore the details of API caveats. Unlike FoamTree mode which

3https://d3js.org/
4https://carrotsearch.com/foamtree/

Table 2: Performance Comparison. †indicates that the im-
provements is statistically significant under paired t-test
with p ≤ 0.05.

Method ROUGE-1 ROUGE-2 ROUGE-SU4

LDA 0.5473 0.3202 0.3550
KM 0.6026 0.3498 0.3836
LexRank 0.6045 0.3555 0.3923
MMR 0.6097 0.3583 0.3868
API Caveat Explorer 0.6269† 0.4152† 0.4374†

needs zooming, Circles mode provides the whole picture of disco-
vered API caveats within a highly-interactive multi-level pie chart.
Fisheye mode uses an interactive graph to show the relationships
among the terms of API caveats. The node size is proportional to the
degree centrality of the node in the graph. Different colors indicate
different term communities. In short, the three interactive modes
together facilitate users to explore and understand the discovered
API caveats.

2.2 Effectiveness Analysis
Given an API type, API Caveat Explorer can extract a set of senten-
ces as desirable caveats from the massive posts. Thus, we compare
API Caveat Explorer with four classical text-summarization met-
hods, each of which can independently select a subset of sentences
as summaries (i.e., caveats). Ten API types are used for evaluation
in our experiments, with manual annotations as groundtruth. Speci-
fically, we recruit three annotators who all have more than 4 years
of programming experiences in Java to generate the gold standard
summaries. We use three evaluation metrics, namely, ROUGE-1,
ROUGE-2, ROUGE-SU4 for effectiveness analysis [7].

Demonstration Papers I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1295

https://d3js.org/
https://carrotsearch.com/foamtree/


Figure 3: Exploration with three interactive modes: FoamTree mode, Circles mode, and Fisheye mode. In FoamTree and Circle
mode, “cocurrent” is clicked.

Table 2 reports evaluation results of the five methods. API Ca-
veat Explorer achieves the best performance against four baselines
on ROUGE scores. More specifically, API Caveat Explorer achieves
22.47%, 12.25%, 10.66% and 10.60% improvements over Latent Di-
richlet Allocation (LDA) [1], k-means (KM) [8], LexRank [4], and
Maximal Marginal Relevance (MMR) [5], respectively. The impro-
vements are statistically significant for the three kinds of ROUGE
scores under paired t-test withp ≤ 0.05. We attribute this to the fact
that API Caveat Explorer takes context independence, prominence,
semantic diversity and non-redundancy into account simultaneously
when selecting API caveats.

3 DEMONSTRATION
Data and Settings. API Caveat Explorer relies on Java 8.05 APIs
and Stack Overflow posts. From the official Java 8.0 website, we
obtain 4, 240 Java API types. We collect all Stack Overflow posts
tagged with Java from the March-2016 data dump as the general
corpus. Among the posts, 1, 081, 439 sentences mention at least one
Java API type.

The configuration of API Caveat Explorer is based on the perfor-
mance of a development set. Accordingly, for each API type, we use
the top-100 prominent terms in its candidate sentences to construct
the term co-occurrence graph with term co-occurrence frequency
being set at 3. The α and β parameters for cost(si ) are set to 0.5.
Demonstration Scenarios.Consider a JavaAPI java.util.HashMap
as shown in Figure 2. To explore the caveats of this API, a program-
mer Tom starts by typing “java.util.HashMap” into the query box.
API Caveat Explorer retrieves the API caveats and presents them on
the user interface. Tom chooses to dig into the “threading” cluster
by double clicking the corresponding block on FoamTree panel. Ac-
cordingly, the panels 3○, 4○, 5○ synchronously display the five API
caveats in this term community. He then chooses to dig deeper into
the sub-cluster labeled “concurrent” (see Figure 3). Afterwards, he
reads the API caveat “Yes, HashMap is not synchronized so inserting
elements from concurrent threads yields undefined results.” and its
original post on Stack Overflow. Finally, he discovers that there is a
risk of sharing java.util.HashMap without proper synchronization.

5https://docs.oracle.com/javase/8/docs/api/overview-summary.html

Besides the FoamTree mode, API Caveat Explorer system also
interactively presents the discovered API caveats usingCirclesmode
and Fisheye mode. After exploring the non-synchronized feature of
java.util.HashMap, Tom has a glance at the whole picture of API
caveats in Circles mode. Furthermore, he finds that the “threading”
community is associated with the “keys” community in Circlesmode
as shown in Figure 3. Subsequently, he clicks the node “keys” and
reads the API caveat “HashMap cannot store multiple values for the
same key” and its original post on Stack Overflow.

For java.util.HashMap, its long official documentation6 men-
tions three API caveats related to element order, multiple threads
synchronization and comparable element. Only the sentence formul-
tiple threads is in bold text. Compared with the lengthy official
documentation, API Caveat Explorer uses an interactive manner to
surface much more hard-to-notice API caveats. By making these
API caveats explicit, API Caveat Explorer provides an important
reminder for novice programmers to avoid such mistakes. It is infe-
asible for API designers to take all these aspects into account when
documenting API cookbooks, because these API caveats can only
be accumulated in practice. On the contrary, API Caveat Explorer
serves as a handbook of API caveats from practice.

REFERENCES
[1] D. M Blei, A. Y Ng, and M. I Jordan. 2003. Latent dirichlet allocation. JMLR 3

(2003), 993–1022.
[2] V. D Blondel, J.-L. Guillaume, R. Lambiotte, and E. Lefebvre. 2008. Fast unfolding

of communities in large networks. Journal of statistical mechanics: theory and
experiment 2008, 10 (2008), P10008.

[3] B. Dagenais and M. P Robillard. 2012. Recovering traceability links between an
API and its learning resources. In ICSE. 47–57.

[4] G. Erkan and D. R Radev. 2004. Lexrank: Graph-based lexical centrality as salience
in text summarization. JAIR 22 (2004), 457–479.

[5] J. Goldstein, M. Kantrowitz, V. Mittal, and J. Carbonell. 1999. Summarizing text
documents: sentence selection and evaluation metrics. In SIGIR. 121–128.

[6] J. Li, A. Sun, and Z. Xing. 2018. Learning to answer programming questions with
software documentation through social context embedding. Information Sciences
448 (2018), 36–52.

[7] C.-Y. Lin. 2004. Rouge: A package for automatic evaluation of summaries. In Proc.
ACL-04 workshop, Vol. 8.

[8] J. MacQueen. 1967. Somemethods for classification and analysis of multivariate ob-
servations. In Proc. Berkeley symposium on mathematical statistics and probability,
Vol. 1. 281–297.

[9] S. Subramanian, L. Inozemtseva, and R. Holmes. 2014. Live API documentation. In
ICSE. 643–652.

6https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

Demonstration Papers I SIGIR’18, July 8-12, 2018, Ann Arbor, MI, USA

1296

https://docs.oracle.com/javase/8/docs/api/overview-summary.html
https://docs.oracle.com/javase/8/docs/api/java/util/HashMap.html

	Abstract
	1 Introduction
	2 API Caveat Explorer
	2.1 System Architecture
	2.2 Effectiveness Analysis

	3 Demonstration
	References



