
HDSKG: Harvesting Domain Specific Knowledge
Graph from Content of Webpages

Xuejiao Zhao1,2,3, Zhenchang Xing4, Muhammad Ashad Kabir5, Naoya Sawada6, Jing Li3, Shang-Wei Lin1,3
1Rolls-Royce@NTU Corporate Lab, Nanyang Technological University (NTU), Singapore

2Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), NTU, Singapore
3School of Computer Science and Engineering, NTU, Singapore

4Research School of Computer Science, Australian National University, Australia
5School of Computing and Mathematics, Charles Stuart University, Bathurst, NSW, Australia

6Cloud Service Division, NTT Communications Corporation, Japan

{xjzhao, shang-wei.lin, jli030}@ntu.edu.sg; zhenchang.xing@anu.edu.au; akabir@csu.edu.au; naoya.sawada@ntt.com

Abstract—Knowledge graph is useful for many different dom-
ains like search result ranking, recommendation, exploratory
search, etc. It integrates structural information of concepts across
multiple information sources, and links these concepts together.
The extraction of domain specific relation triples (subject, verb
phrase, object) is one of the important techniques for domain
specific knowledge graph construction. In this research, an
automatic method named HDSKG is proposed to discover domain
specific concepts and their relation triples from the content of
webpages. We incorporate the dependency parser with rule-based
method to chunk the relations triple candidates, then we extract
advanced features of these candidate relation triples to estimate
the domain relevance by a machine learning algorithm. For the
evaluation of our method, we apply HDSKG to Stack Overflow
(a Q&A website about computer programming). As a result, we
construct a knowledge graph of software engineering domain
with 35279 relation triples, 44800 concepts, and 9660 unique verb
phrases. The experimental results show that both the precision
and recall of HDSKG (0.78 and 0.7 respectively) is much higher
than the openIE (0.11 and 0.6 respectively). The performance is
particularly efficient in the case of complex sentences. Further
more, with the self-training technique we used in the classifier,
HDSKG can be applied to other domain easily with less training
data.

Index Terms—Knowledge Graph, Structural Information Ex-
traction, openIE, Stack Overflow, Dependency Parse

I. INTRODUCTION

Recently, the trends and development of information retrie-

val and mining have transferred from the document-centric to

the entity-centric [1]. So knowledge graph which integrates

the structural information of concepts across multiple infor-

mation sources, and links these concepts together [2] is useful

for many different domains, such as search result ranking,

recommendation, exploratory search, etc [3], [4], [5], [6]. The

webpages such as Wikipedia, Quora are potential repositories

for building up knowledge graph. Thus, automatic knowledge

graph construction techniques for the content of webpages

become a widely research topic. [4], [7], [8].

Open information extraction refers to the extraction of

relation triples without specifying the fixed relation schema,

typically the relation is a triple with (subject, verb phrase,

object) structure [9], [10] (Subjects and objects are collecti-

vely called concepts). The relation triples are one of the

important components of the knowledge graph [11]. There

are many researches on open information extraction including

NELL [12], OpenIE [13], and Google [14]. The key challenge

in construction of the knowledge graph is the extraction of

relation triples with high precision and recall.

Knowledge Graph is also popularly used in software engi-

neering domain [6], [15], [16], [17] to solve various problems

such as software requirements analysis and design [18], coding

support, documentation [6], maintenance and testing [19].

But there are few studies focus on structural knowledge-

base construction in software engineering domain. Large scale

knowledge-base construction (KBC) in other domains were

studied intensely over the last decade [12], [20], [21], [22],

[23], [24], [25]. Such as relational database which allow

users to semantically query relationships and properties of

natural language resources, including links to other related

datasets [7]. It can be used to straightforward search engine

algorithms or other search operations and improve the accuracy

of information retrieval. Even though there are some research

focusing on ontology construction in software engineering

domain [26], [27]. They only use the domain key words

as the concepts and explore the taxonomic relations of the

key words. However, there are still many domain concepts

indicating richer semantic and more useful relations between

the concepts needed to be mined.

Stack Overflow is the most popular Q&A website about

computer programming [27], [28], every question requires the

asker to give 1-5 tags. The tagWiki is the content used to

describe the definition and some related resource of every

tag in Stack Overflow. Such a knowledge repository contains

huge number of sentences with affluent concepts and concepts

relations descriptions of software engineer domain. These

relations are essential for construction of software engineer

domain knowledge graph. There are a substantial amount of

work that explore the knowledge of tagWiki [1], [29], but none

of them focus on extraction of the relation triples.

In this paper, an automatic method named HDSKG (Har-

vesting Domain Specific Knowledge Graph) is proposed to

discover domain specific concepts and their relation triples

from the domain specific webpages. We incorporate the depen-

978-1-5090-5501-2/17/$31.00 c© 2017 IEEE SANER 2017, Klagenfurt, Austria
Main Research

56

dency parser with the rule-based method to chunk the relations

triple candidates, then extract novel features of those triples

to estimate domain relevance by self-training SVM (Support

Vector Machine) classifier.

For the evaluation, we conduct a case study which extracts

the knowledge graph from Stack Overflow. Our experimental

results show that both the precision and recall of HDSKG (0.78

and 0.7 respectively) is much higher than the openIE (0.11 and

0.6 respectively) – the state of the art tool for relation triples

extraction. Furthermore, self-training SVM classifier makes

HDSKG easy to be applied to other domains with less training

data.

This paper makes following four major contributions:

• We propose HDSKG that extracts the dependencies of

the NP (Noun Phrases) and VP (Verb Phrases) from

sentences to generate relation triples by incorporating the

dependency parser with rule-based chunking.

• We extract advanced features from the relation triples,

then leverage a self training SVM classifier and domain

lexicon to estimate the domain relevance of the relation

triples with a small number of training data.

• We apply HDSKG to Stack Overflow tagWiki, and harvest

a knowledge graph of software engineering domain with

44800 concepts, 9660 unique verb phrase and 35279

relation triples, and it is available online 1.

II. RELATED WORK

Automatic knowledge graph construction is a popular rese-

arch topic. According to the relations property, we divide them

into 3 categories.

The first category extract fixed relations using information

extraction techniques to construct knowledge graphs. The

typical techniques such as CiteSeerX [30], DIG [31], Pujara

et al. [32], and NELL [12], etc. focus on small-scale fixed

relations extraction with high precision. Deepdive [3] extract

relations by Markov Logic Networks (MLNs) and improve

the extraction by the bootstrapping system [33]. Bootstrapping

technique is similar to self-training in our system.

The second category uses open information extraction

technique. It doesn’t need to appoint some fixed relation in

advance. Representative technique are proposed by Prisma-

tic [5], Schmitz Michael et al. [34], and Fader et al. [35].

Abebe and Tonella et al. [36] presented a semi-automated

approach to construct domain concept ontology from source

code identifiers. Our system belongs to this category and we

further add the function for domain relevance estimation.

The third category leverage structured data sources to build

up the knowledge graph. YAGO [4] and YAGO2s [37] is a

structured knowledge base which automatically extracted from

Wikipedia with the data e.g., categories, redirects, infoboxes,

etc. The knowledge graph of YAGO [4] and YAGO2s [37] is

built by defining entity classes from the conceptual Wikipedia

categories. As of 2012, YAGO2s has more than 10 million

1http://neo4j.tuntunkun.org/xuejiao/

entities and 120 million relations about these entities, the

accuracy is above 95% which is checked manually.

Knowledge graph is also widely researched in software

engineering domain. Padhye et al. [6] propose a technique

to extract the profiles of the usage of API to connect people,

projects and libraries in a network. Subramanian et al. [17]

link source code examples to API documentation by extraction

of entity linking. To the best of our knowledge, our work is

the first attempt for mining knowledge graphs which contain

relation description for each entity from Q&A website.

III. THE APPROACH

In this section, we describe the approach of HDSKG to show

how HDSKG harvest domain specific knowledge graph from

content of webpages. In particular, we present how HDSKG
works on natural language texts sources to extract relation

triples of domain specific knowledge graph.

A. Architecture of HDSKG

Fig. 1 is the framework of HDSKG. The input of HDSKG is

the natural language text materials from content of webpages

(e.g., healthcare webpages, computer programming webpages,

etc.). The output of HDSKG is the knowledge graph of target

domain .

The HDSKG contains two main parts as shown in Fig. 1

named HDSKG Chunking and HDSKG Domain Relevance
Estimation. HDSKG Chunking incorporates the rule-based

method with dependency parser to chunk candidate relation

triples. This part comprises five main steps, namely pre-

process text, split sentences, add NLP (Natural Language

Processing) makeup, chunk NP and VP, and chunk relation

triples. The second part is used to estimate domain relevance

of the candidate relation triples, which comprises two main

components, namely extract features of candidate relation

triples, estimate domain relevance of each relation triples by

self-training SVM classifier.

B. Pre-process Text

In this step, we extract all the text content from the html

files of webpages and filter some useless information which

don’t contain concepts and relations like hyperlink lists, code

snippets, etc. Then we split the text content into sentences.

After that, we enrich the sentences by two steps:

• Recording the source information for every sentence, e.g.,

the title of the source webpage from which the sentence

are extracted, and the sequence of sentence in the source

webpage.

• Making the sentences readable without the context: repla-

cing the pronouns at beginning of the sentences (e.g., it,

she, he) with the title of source webpage [9].

Take the sentence “It is written in C++, and is ultimately
derived from the Borland InterBase 6.0 source code.” for

example. It is the third sentence in the tagWiki of Firebird,

so we record the title of the source webpage – Firebird and

the sentence sequence – three. Then we replace the “it” to

“Firebird”, so the sentence become “Firebird-3, Firebird is

57

Fig. 1. The Framework of HDSKG

written in C++, and is ultimately derived from the Borland
InterBase 6.0 source code.”

C. Add NLP Makeup

NLP is widely used for natural language pre-processing

and semantic analysis [38], [39], [40]. The NLP makeup

component in HDSKG system adopts the tool named coreNLP
of Stanford for Tokenization, POS (Part of Speech) Tagging,

Dependency Parsing and Lemmatization [41], [42], [43], [44].

Tokenization is used to break the text into words, phrases,

or symbols.

The POS is the category of words (or, more generally, of

lexical items) which has similar grammatical properties. e.g.,

NNP:Proper noun, singular, VBZ:Verb, third person singular

present, RB:Adverb. Fig. 2 shows the POS tagging result of

definition sentence of Firebird generated by coreNLP.

The goal of lemmatization is to reduce inflectional forms

and derivational related forms of a word to a common base

form.

D. Chunk Candidate Relations Triples

There are twice chunking to get the candidate relation triples.

Firstly, HDSKG Chunking chunks the tokens in the sentence to

NP and VP according to the POS, then utilizes the dependency

of the tokens to chunk the VP and NP to relation triples.

1) Chunk NP and VP by Rule-Based Chunking: In this

step, we adapt a fulltext parsing techniques called “rule-based

chunking” to extract NP and VP [45], [46].

In our system, the NP and VP are identified by the regular

expressions as shown in Tab. I. Where (MD) is modal; (VB.)

stands for different categories of verb such as VB - verb base

form, VBG - verb gerund or present participle, VBN - verb

TABLE I
REGULAR EXPRESSION OF DIFFERENT CHUNKS

Name Regular Expression

VVP
(MD)*(VB.*)+(JJ)*(RB)*(JJ)*(VB.*)?(DT)?(TO*)+(VB)+
(MD)*(VB.*)+(JJ)*(RB)*(JJ)*(VB.*)?(DT)?(IN*)+(VBG)+

VP

(MD)*(VB.*)+(CD)*(JJ)*(RB)*(JJ)*(VB.*)?(DT)?(IN*|TO*)+
(MD)*(VB.*)+(JJ)*(RB)*(JJ)*(VB.*)?(DT)?(IN*|TO*)+
(MD)*(VB.*)+(JJ)*(RB)*(JJ)*(VB.*)+
(MD)*(VB.*)+

NP
(CD)*(DT)?(CD)*(JJ)*(CD)*(VBD|VBG)*(NN.*)*-
(POS)*(CD)*(VBD|VBG)*(NN.*)*-
(VBD|VBG)*(NN.*)*(POS)*(CD)*(NN.*)+

past participle, VBP - verb non-3rd person singular present,

VBZ - verb 3rd person singular present. (NN.*) stands for

different categories of noun such as NN - singular or mass

noun, NNS - plural noun, NNP - singular proper noun, NNPS -

plural proper noun. (JJ) represents an adjective; (RB) is adverb;

(DT) presents an article; and (IN*) means any preposition or

subordinating conjunction. The “VVP” is the VP with open

clausal complement.

In the regular expressions, “?” stands for whether or not

there is such a determinant; “*” means zero or more deter-

minant; “+” means must have such a determinant; “-” means

continue to next row.

Using the rule-based chunking, we chunk the tokens of

sentence to VP and NP. For example, the sentence “PyTa-
bles is built on top of the HDF5 library, using the Python
language and the NumPy package.”, we chunk VP “is built
on” and “using”; NP “PyTables”, “HDF5 library”, “Python
language”, and “NumPy package” as shown in Fig. 3.

58

Firebird is written in C++ , and is ultimately derived from the Borland InterBase 6.0 source code
NNP VBZ VBN IN NNP , CC VBZ RB VBN IN DT NNP NNP CD NN NN

Fig. 2. POS tagging results of the definition sentence of the Firebird

S

NP VP NP of IN NP

PyTables NNS built VBNis VBZ on IN top NN the DT HDFS NNP library NN

‘ ‘ VP

using VBG

NP

the DT Python NNP Language NN

and CC NP

the DT NumPy NNP package NN

. .

Fig. 3. Result of NP and VP Chunking

PyTables

Numpy package

language
conj:and

HDFS library

Python

using

dobj

dobj

compound

compound

builtnsubjpass

mod: on top of xcomp

compound

Fig. 4. Graphical representation of the Dependencies for the sentence:
“PyTables is built on top of the HDF5 library, using the Python language
and the NumPy package.”

2) Dependency Parsing: Dependency Parsing extracts the

grammatical structure of the sentence, then derive relationships

between “head” words (also known as Governor) and words

which modify the heads (also known as dependent). Fig. 4

shows a directed graph representation of the dependencies for

the sentence: “PyTables is built on top of the HDF5 library,
using the Python language and the NumPy package.”. The

nodes of Fig. 4 are the words of the sentence, and the edges

in Fig. 4 are grammatical relations.

Tab. II presents some important dependencies of sentence

“PyTables is built on top of the HDF5 library, using the Python
language and the NumPy package.” used in our system.

As Tab. II shows, “nsubjpass” is a NP and the syntactic

subject of a passive clause [47]. For our illustrative sentence,

nsubjpass(PyTables-1, built-3) means that “PyTables-1” is the

syntactic subject of the verb “built-3”.

The “nmod” used between two content words, as the

preposition of one content word is now viewed as a case

depending on its complement. In general, the “nmod” indicates

some further adjunct relation specified by the case [48]. The

nmod (library-9, built-3) means that “built-3” is nominal

modifiers of “library-9”. The “library-9” expresses further “on

top of” relation to “built-3”. Notice that some times there will

appear a preposition after “nmod” like “nmod:at”. This “at”

means the complement use the preposition “at” to modify the

Dependent.

The “xcomp” means open clausal complement of a verb

or an adjective. These complements are always non-finite

rather than adjuncts/modifiers. It is a predicative or clausal

complement without its own subject. So the “xcomp” always

expresses a new meaning or new relation. The xcomp means

that “using-11” is open clausal complement of “built-3”.

The “dobj” is the direct object of a VP, and is also a NP

which is the accusative object of the verb.
3) Chunk Relation Triples: After the VP and NP chunking,

we can chunk semantic relation like (concept, relation verb

phrase, concept). Traditional rule-based chunking detects the

chunk with morphological structure like (NP, VP, NP). This

method not only misses many information, but also adds noise

to the relation triples. For example, from sentence “Firebird is
written in C++, and is ultimately derived from the Borland In-
terBase 6.0 source code.”, traditional rule-based chunking can

only extract relation triple (Firebird; is_written_in; C++). From

sentence Eclipse on your system can be used as a Java editor
and a C++ editor, relation triple (system; can_be_used_as;

Java_editor) are extracted by traditional rule-based chunking

using the morphological structure (NP, VP, NP). However, it

is semantically wrong.

To tackle the above problems, we propose a method which

incorporates the dependency parser with rule-based chunking.

By analyzing the dependency generated by the dependency

parse technique, the real subject of the verb in a complex

sentence is determined. We assuming having a sentence S,

Firstly we use the rule-based chunking to get all the VP and

NP as below:

S = (NP1, NP2, ..., NPi, ..., NPm, V P1, V P2, ..., V Pj , ..., V Pn)
(1)

Where NPi is the ith NP in S, V Pj is the jth V P in S,

there are m NP and n VP in S.

NPj = (nj1, nj2, ..., njr, ..., njq) (2)

V Pi = (vi1, vi2, ..., vik, ..., vip) (3)

Where njr is the rth term of NPj , vik is the kth term of

V Pi, we assume that NPj contains q terms and V Pi contains

p terms.

Secondly we use dependency parsing to get the dependency

of all terms v and n. Due to the dynamic of natural language,

there are too many different expressions for the same meaning.

After we analyzing the dataset deeply, we propose many

scenarios to deal with the sentences. We choose six scenarios

in our system to show how HDSKG Chunking chunks the

candidate relation triples.

Scenario 1: If we extract the nsubjpass (n12, v13), dobj(v13,

n22) from S by dependency parsing, we can chunk (NP1,

V P1, NP2) as a relation triple. For example, in the sentence

“OpenRPT provides WYSIWYG editor”, the “openRPT” is NP1

59

TABLE II
DEPENDENCIES DESCRIPTION FOR SENTENCE: “PyTables is built on top of the HDF5 library, using the Python language and the NumPy package.”

Dependency Dependent Governor
Semantic relationship between the
words depicted by denpendency

nsubjpass PyTables-1 built-3 “PyTables-1” is passive nominal subject of “built-3”
auxpass is-2 built-3 “is-2” is passive auxiliary of built-3

det the-7 library-9 “the-7” is determiner of “library-9”
nmod library-9 built-3 “built-3” is nominal modifiers of “library-9”
xcomp using-11 built-3 “using-11” is open clausal complement of “built-3”

dobj
language-14
package-18

using-11
“language-14” and

“package-18” is direct object of “using-11”

and n11 , the “WYSIWYG editor” is NP2 and “editor” is n22,

the “provides” is V P1 and v11. From dependency parsing we

get nsubjpass (openRPT-1, provides-2) and dobj (provides-2,

editor-4), so we can chunk relation triple (OpenRPT; provides;

WYSIWYG_editor).

Scenario 2: If we extract the dependency like nsubj-

pass (n11, v12), nmod (v12, n23) in sentence “HSQLDB
is supported by many Java frameworks.”, where n11 is

“HSQLDB”, v12 is “supported”, n23 is “frameworks”. We

should chunk relation triple (HSQLDB; is supported by;

many_Java_frameworks). Here we assume adjective “many”

can’t be ignored like DT (article), because “many Java frame-

works” is not equal to “all Java frameworks”.

Scenario 3: In some cases, for example “webkit is de-

veloped by Intel at the Intel Open Source Technology Cen-

ter.”, we get dependency like nsubjpass(webkit-1, developed-

3), nmod:agent(developed-3, Intel-5) and nmod:at(developed-

3, Center-12), we chunk two relation triples (webkit;

is_developed_by; Intel) and (webkit; is_developed_at; In-

tel_Open_Source_Technology_Center). Notice that with the

preposition of dependency “nmod:at”, the preposition of V P1

“is_developed_by” can be changed to “at” while chunking the

second relation triples.

Scenario 4: If there is an “and” between two NPs, we

will chunk 2 relation triples with different subjects or objects.

For example, from sentence “flashcanvas renders shapes and

images.”, we will chunk relation triples as:

• (flashcanvas; renders; shapes)

• (flashcanvas; renders; images)

Scenario 5: If there is a dependency “xcomp” extrac-

ted from S, we will give an additional dependency “nsubj-

pass” to the dependencies of the sentence. For example, the

sentence “PyTables is built on top of the HDF5 library,
using the Python language and the NumPy package.” as

shown in section. III-D2, we extract two dependencies –

xcomp(using-11, built-3) and nsubjpass(PyTables-1, built-3)

from this sentence, we will add an additional dependency

nsubjpass(PyTables-1, using-11) to this sentence. It because

that as a open clausal complement of a verb or an adjective,

the “xcomp” always expresses a new meaning or new relation.

Thereby we can chunk relation triples as:

• (PyTables; is_built_on_top_of; HDF5_library)

• (PyTables; using; Python_language)

• (PyTables; using; NumPy_package)

Scenarios 6: If S contains VVP as mentioned in

section. III-D1, we don’t chunk two relation triples like

Scenarios 5 even there is a “xcomp” extracted from S. This is

because the two verbs of VVP share the same object. Instead,

we chunk only one relation triple and leave the two verbs

together in VVP as the relation verb of the relation triple. For

example “Joone is used to build neural networks.”, we will

chunk relation triple as:

• (Joone; is_used_to_build; neural_networks)

By the above method, from “Firebird is written in C++, and

is ultimately derived from the Borland InterBase 6.0 source

code.”, we can get dependency nsubjpass(Firebird-1, derived-

10), so we will chunk relation triples as:

• (Firebird; is_ultimately_derived_from;

Borland_InterBase_6.0_source_code)

• (Firebird; is_written_in; C++)

From sentence “Eclipse on your system can be used as a
Java editor.” we can get nsubjpass(Eclipse-1, used-7). Thus

we can chunk relation triples as:

• (Eclipse; can_be_used_as; Java_editor)

• (Eclipse; can_be_used_as; C++_editor)

E. Domain Relevance Estimation of Candidate Relations Tri-
ples

From HDSKG Chunking we present in section. III-D, we

harvest many candidate relation triples (subject, verb phrase,

object). But some of the relation triples are not related to our

target domain. For example, the relation triple (Values; may be

enclosed in; quotes), this is a correct chunking but meaningless

for the software engineering domain. In this section, we use a

machine learning method with advanced features to estimate

the domain relevance of the candidate relation triples generated

by HDSKG Chunking.

1) Feature Engineering: There are many properties beyond

simple term statistics which can be extracted from the candi-

date relation triples to estimate the domain relevance of them.

We use the features list in Tab. III to represent each candidate

relation triples.

For the complex features we provide a brief description

below.

Text Features: This feature type regards the basic text

properties of the cr (candidate relation triples) at the term

level. The POS fraction features capture the distribution of

POS tags in the cr and uses following definition:

60

TABLE III
THE FEATURES FOR CANDIDATE TRIPLES CLASSIFICATION

Name Gloss

Text features

1
2-5
6-9

10-13
14-17

#terms_cr
POS fractions_subj
POS fractions_obj
POS fractions_vp
POS fractions_cr

Number of,terms of cr (candidate relation triples)
Fraction of verbs, nouns, adjectives, others,of subject
Fraction of verbs, nouns, adjectives, others,of object
Fraction of verbs, nouns, adjectives, others,of verb phrase
Fraction of verbs, nouns, adjectives, others,of cr

Corpus features

18
19
20
21
22
23
24

#mention_subj
#mention_obj
#mention_vp
#mention_cr
suport_subj_obj
conf_subj
conf_obj

Number of subject mentioned in whole cr corpus
Number of object mentioned in whole cr,corpus
Number of verb phrase mentioned in whole cr corpus
Number of cr mentioned in whole cr corpus
The proportion that subject and object occur simultaneously in whole cr corpus
The proportion of the occurrence of object when subject occurs in whole cr corpus
The proportion of the occurrence of subject when object occurs in whole cr corpus

Concept features

25
26
27
28
29
30
31

subj_tfidf,
obj_tfidf
sum_tfidf
average_tfidf
%domain_keyword_subj
%domain_keyword_obj
%domain_keyword_subj_obj

TF-IDF of subject in tagWiki,in whole text materials
TF-IDF of object in tagWiki,in whole text materials
Sum of TF-IDF of subject and object in whole text materials
Average TF-IDF of subject,and object in whole text materials
The proportion,of number of domain keywords in subject
The proportion,of number of domain keywords in object
The proportion,of number of domain keywords in subject and object

Source features

32
33
34
35
36
37

ss_position
cr_position
From_subj_obj_stm
#terms_ss
start_index_cr
end_index_cr

Position of ss (source sentence) in stm (source text material)
Position of cr in ss
If this cr extract from stm which the title involve the subject or object
Number of terms in ss which cr extracted from
Start index of the first term of cr in ss
End index of the first term of cr in ss

• noun : the tokens which POS tags are NN, NNS, NNP,

or NNPS.

• verb : the tokens which POS tags are VB, VBD, VBG,

VBN, VBP, or VBZ.

• adj : the tokens which POS tags are JJ, JJR, or JJS.

Corpus Features: These features present the statistic re-

lation between current cr and whole cr corpus. If the cr is

extracted from source webpages many times, this cr appear

to be relevant to target domain with higher potential. The

confsubj denotes the percentage of the occurrence of object

when subject occurs, the confobj denotes the percentage of

the occurrence of subject when object occurs. And the support

indicates the percentage that subject and object occur simulta-

neously in the corpus. These association rule features present

relation between the subject and object. If these two concepts

can be found frequently from stm (source text material)

simultaneously, the relation triples of these two concepts are

high potential relevant to target domain.

Concept Features: These features regard the quality of the

concepts. TF-IDF is a numerical statistic approach which can

determine the words relevance in a corpus of documents [49],

[50]. TF (Term Frequency) means the raw frequency of a

term in a document. IDF (Inverse document frequency) is the

logarithmically scaled inverse fraction of the documents that

contain the word, obtained by dividing the total number of

documents by the number of documents containing the term,

and then taking the logarithm of that quotient. Here is the

formula for unnormalized weight of termi in documentj in

a corpus of D (documents):

TF−IDFweighti,j = frequencyi,j∗log2(D/documentfreqi)
(4)

Thus the features subj_tfidf , obj_tfidf , sum_tfidf and

average_tfidf can indicate the domain relevance of subjects

and objects. If most of the terms in a subject are very general

like “values”, “process”, etc., the value of the subj_tfidf
will be very low. Otherwise if the subject contains unique

and distinctive terms like “c++ library”, “MySQL relational

database”, the subj_tfidf value will be high.

We also prepare the domain lexicon which contains the

specialized vocabularies of the target domain for estimating the

domain relevance of the candidate relation triples. Obviously

the candidate relation triples which contain more specialized

vocabularies of the target domain show higher domain rele-

vance [51].

Source Features: Here, we refer to features of the cr
depended on the stm (source text material) and ss (source

sentence) [52]. For the crposition and ssposition, these two

features mean that the cr extracted from the front part of

the stm and the front part of the ss is high relevance

to target domain. The position refer to the sequence of a

cr in the stm or the ss. On the other hand, if a cr is

61

TABLE IV
EXAMPLE OF RELATION TRIPLES LABEL

Candidate Relation Triples Label

(Java; supports; features) False

(row; is_represented_as; list) False

(Values; may_be_enclosed_in; quotes) False

(Java; was_originally_developed_by; James_Gosling) True

(Java; was_originally_developed_at; Sun_Microsystems) True

(Eclipse; is; open-source_ide_platform) True

extracted from the webpage in which the topic contains the

terms of concepts, it shows high domain relevance. For the

long sentence, cr_position, start_indexcr and end_indexcr

indicate that the cr extracted from the front part of a long ss
shows high domain relevance.

2) Label Data: We design the estimation of domain rele-

vance as a binary-class classification problem to solve. The

supervised learning of classification requires the labeled data

for training. We manually mark candidate relation triples by

domain experts as training data to boost the learning process.

Tab. IV shows a example about how to label the positive and

negative relation triples.

3) Semi-Supervised SVM Classifier Learning: The wor-

kload while using a system to a new domain determines

the applicability and the portability of a system. Obviously,

labeling new training data is the most labor consuming part.

To reduce the labor force and improve the prediction accuracy,

we select the best single classifer – SVM classifer with a

self learning structure to do the classification [27]. In the

first iteration, we use the expert labeled relation triples as the

training data and get a trained SVM classifier. Then, we input

the unlabel relation triples to the trained SVM classifier and

get the labels (or classes) of them. The classifier not only

classify the relation triples, but also provide a confidence level

to every classified relation triple to show the probability of

current classification. From the second iteration, self-training

enrich training data with the labeled relation triples which

confidence > 0.9 or confidence < 0.1 to train a new

classifier for the next iteration. The iteration will terminate if

the difference of accuracy lower than a threshold or achieved

the preseted iteration time. Then we use the trained SVM

classifier at the end of the iterations to classify all the unlabeled

relation triples, and use the relation triples in the positive

classes to construct the knowledge graph of target domain.

IV. EXPERIMENT

In this section, a case study is proposed to illustrate the

HDSKG system process for acquiring the domain specific

relation triples and constructing a knowledge graph. tagWiki
of Stack Overflow is used to extract the knowledge graph and

some tagWiki documents are chose to evaluate our system.

A. Experiment Setup

1) Data Acquisition: We download the data dump of Stack

Overflow until Mar, 2015 from Stack Overflow official data

dump1.

Source Text Materials Acquisition: We use the tagWiki of

Stack Overflow provided in a html format as our source text

materials and delete some content which contain few relation

triples such as “frequent question”, “Useful links”, etc. Like

the tagWiki of tag “Firebird”, the input is the html file of

the webpage of “Firebird”2. As a result, we acquire 20534

documents and split 97454 sentences from the documents.

Domain Lexicon: We use the tags of Stack Overflow as

the domain lexicon. Finally, 27620 tags is acquired, these

tags cover the popular programming languages(e.g., java,

python, php), frameworks(e.g., GWTP, Pallet, AnyEvent), li-

braries(e.g., OmniFaces, PHPPowerPoint), tools(e.g., opengl,

SubGit, MvcSiteMapProvider) and some frequently used ter-

minology(e.g., cookies, ip) of software engineering domain.

Ground Truth of the Relation Triples: From the tagWiki

of Stack Overflow, we choose 47 tagWikis by random as our

evaluation materials. Four experts are asked to extract the

relation triples from the webpages of the 47 tagWikis. The four

experts have the background in software engineering and three

of them have ever published knowledge graph or ontology

construction related papers. To ensure the precision, we give

the hyperlinks to the experts rather than the pre-processed

documents. Only the relation triples which extract by at least

2 experts are involved in our ground truth. Finally we get 96

relation triples from the webpages of tagWiki, but we ignore

5 of them due to their source sentences from webpages are

different from the source sentences from data dump. We use

the rest 91 relation triples as the ground truth to evaluate the

performance of HDSKG.

Involved Tools: The Stanford CoreNLP is used to do the

NLP make up and dependency parse [53]. The tf-idf library

of Gensim is used to compute tf-idf [54]. The nltk is used to

do the VP, NP chunking [55]. neo4j is used to store the finally

relation triples for supporting the knowledge graph searching

and result visualization [56].

B. Comparison Method openIE

We leverage the popular open information extraction tool -

open IE of Stanford as the comparison method [10], [13] due

to it is close to HDSKG.

But there are also some differences between our tool and

openIE. First is the method to extract relation triples from stm.

openIE only fucus on extraction of relation triples, but ignore

the subject and object should be entities. For example, from

sentence “Born in a small town, she took the midnight train

going anywhere.”, openIE will extract relation triple (she; took;

midnight_train). Here “she” is not an entity. HDSKG identifies

the pronouns in a sentence and replace by suitable nouns.

If some pronouns can’t be replaced, we will not extract the

1https://archive.org/details/stackexchange
2http://stackoverflow.com/tags/firebird/info

62

corresponding relations, because the relation triples between

the pronouns and the nouns is useless to knowledge graph.

The other diffidence is that openIE only extract the relation

triples but can’t estimate the domain reverence of them. So

there are many redundancy relation triples will be extracted

by openIE.

C. Evaluation and Results Analysis

1) Classifier Comparison and Accuracy Evaluation of Ite-
rations: We do 10-folder cross-validation to evaluation the

accuracy in each iteration. The 1000 labeled data (contain

467 positive data and 523 negative data) are separated in

two parts, 900 of them are used as training data and 100 of

them are used as testing data. In every cross-validation, the

prediction confidences of every prediction data are recorded.

After 10 times cross-validation, only the prediction data which

confidence > 0.9 or confidence < 0.1 in all the 10 times

cross-validation are chose to append to training data for the

next iteration. Fig.5 is the accuracy of different classifiers

in each iteration. It shows the performance of the DNN is

the most sensitive classifier to the number of training data,

so if we can get large number of training data, the best

classifier should be DNN. SVM linear classifier achieves the

highest accuracy with the 6 times self-training iterations. The

accuracy increase from 0.71 to 0.76, which better than random

forest (estimators number = 500) and 4 layers DNN with the

hidden_units = [200, 400, 100, 50].

0.6
0.62
0.64
0.66
0.68
0.7

0.72
0.74
0.76
0.78
0.8

1 2 3 4 5 6

Ac
cu

ra
cy

Iteration
DNN Random Forest SVM Linear

Fig. 5. Accuracy of Classifiers in each Iteration

2) Features Contribution Analysis: For exploration the

effect of different features set, we train 5 SVM classifiers

using different features groups. Each classifier only uses text

features, corpus features, concept features, source features and

all features respectively. As shown in Fig.5, the classifier with

all features performs best. From Fig.5 we also can infer that all

these features we design are useful in estimation the domain

relevance of relation triples.

3) Performance Comparison: We further explore the per-

formance of HDSKG. Tab. V shows the extractions of tra-

ditional Rule Based Chunking, openIE, HDSKG Chunking
and HDSKG Domain Relevance Estimation. This example

indicates that compare with traditional Rule Based Chun-

king, HDSKG Chunking can get more relation triples which

0 0.2 0.4 0.6 0.8

All Features

Source
Features

Concept
Features

Corpus
Features

Text
Features

Accuracy

Fig. 6. Accuracy of Classifiers with Different Features

can’t extract by simple morphology matching. The traditional

Rule Based Chunking can only chunk the relation triples

(PyTables; is_built_on_top_of; HDF5_library) from sentence

“PyTables is built on top of the HDF5 library, using the
Python language and the NumPy package.”, but can’t chunk

(PyTables; using; NumPy_package) because the morphology

of this relation triple is not continuous (NP,VP,NP). With the

using of dependency parsing, we can get the xcomp (using-

11, built-3), dobj (using-11, language-14), and dobj (using-

11, package-18). These dependencies mean that “using-11”

is open clausal complement of “built-3”, and the object of

“using-1” is “language-14” and “package-18”. From scenario

5 of HDSKG Chunking, we can chunk (PyTables; using;

NumPy_package) and (PyTables; using; Python_language).

openIE derives the latent relation triple (PyTables; using;

Python_language), but ignores the paralleled relation triple

(PyTables; using; NumPy_package). But this relation triple

captures by HDSKG accurately by the scenario 4 designed

in our system. In addition to above shortcoming, openIE also

generates many redundant relation triples like (PyTables; is;

built). HDSKG doesn’t make this mistake due to our VP and

NP chunking can identify the verb phrase “is built on top of”.

For the sentence “Jansi is a small java library that allows

you to use ANSI escape codes to format your console output

which works even on windows.”, all the above tree methods

extract the wrong relation triple (ANSI; escape; codes). Then

we can use the HDSKG Domain Relevance Estimation to filter

this irrelevant relation triple. From the Tab. V we can see

the HDSKG Domain Relevance Estimation can reserve the

correct relation triples and filter out the irrelevant relation

triples accurately.

Compare with the above 2 methods, HDSKG Chunking
extracts both apparent and latent relation triples, and the

domain relevance estimation of HDSKG filters the relation

triples which less relevant to the target domain.

Precision, recall and f-measure are used as evaluation me-

trics of the extractions of HDSKG. Precision is the ratio of the

correct relation triples to all extractions, this metric is seen as

a measure of quality. Recall is the ratio of the correct relation

triples to all ground truth relation triples, which is a measure

of completeness. F-measure is computed by:

F = 2 · Precision · Recall
Precision + Recall

(5)

63

TABLE V
RELATION TRIPLES EXTRACTED FROM DIFFERENT EXTRACTION METHODS

����������������Extraction Method

Content of Sentence PyTables is built on top of the HDF5 library,
using the Python language and the NumPy package.

Jansi is a small java library that allows you
to use ANSI escape codes to format your

console output which works even on windows.

Rule Based Chunking Extraction (PyTables; is_built_on_top_of; HDF5_library)
(Jansi; is; small_java_library)

(ANSI; escape; codes)

openIE Extraction
(PyTables; using;,Python_language)

(PyTables; is; built)
(PyTables; is_built_on_top_of; HDF5_library)

(Jansi; is; small)
(ANSI; escape; codes)

HDSKG Chunking Extraction
(PyTables; using; Python_language)
(PyTables; using; NumPy_package)

(PyTables; is_built_on_top_of; HDF5_library)

(Jansi; is; small_java_library)
(ANSI; escape; codes)

HDSKG Domain Relevance Estimation Extraction
(PyTables; using; Python_language)
(PyTables; using; NumPy_package)

(PyTables; is_built_on_top_of; HDF5_library)
(Jansi; is; small_java_library)

Ground Truth
(PyTables; using; Python_language)
(PyTables; using; NumPy_package)

(PyTables; is_built_on_top_of; HDF5_library)
(Jansi; is; small_java_library)

Fig. 7 shows the performance of different extracting met-

hods, compare with openIE, HDSKG domain relevance estima-
tion achieves the highest precision 0.77 and HDSKG Chunking
get the highest recall 0.74.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

Precision Recall F-Measure

 HDSKG Chunking HDSKG Domain Relevance Estimation openIE
Fig. 7. Performance of different Extraction Methods

According to the result, even we lose 0.04 recall by estima-

tion of domain relevance , the precision is be improved 0.25.

The recall performance of the openIE is 0.6, which is close to

the recall of HDSKG Domain Relevance Estimation, but this

recall of openIE is at the expense of reduction of the precision

by generating more irrelevance relation triples.
Compare with the openIE, HDSKG Chunking produces

less relation triples with higher precision. HDSKG Domain
Relevance Estimation estimates the domain relevance with

small loss of recall but improves the precision conspicuously.

Fig. 8 is part of the knowledge graph generate by HDSKG in

the software engineering domain.

V. DISCUSSION

So far, we have extracted a knowledge graph of software

engineering domain from the tagWiki of Stack Overflow. In

this section, we discuss the implications of our research for

knowledge graph extraction, information retrieval of software

engineering domain, and knowledge representation.

A. Implications for Knowledge Graph Extraction
As shown in section III-D, HDSKG Chunking incorporates

the dependency parser with rule-based method and extracts the

candidate relation triples in the natural language materials with

high precision and low recall. The 6 scenarios we present in

section. III-D3 cover most of the occasions in natural language

expressions. It ensures the HDSKG can easy to be used in other

natural language materials, e.g., healthcare, industrial design,

etc.

For the estimation of domain relevance part of HDSKG,

the features we designed are efficient to distinguish domain

relevant relation triples as shown in section. IV-C2. HDSKG
just needs to change the domain lexicon to the domain you

want and label few training data, with the self-training SVM

classifier, HDSKG will construct the knowledge graph of your

target domain automatically.

B. Implications for Information Retrieval in Software Engi-
neering Domain

With the knowledge graph of software engineering domain,

we can change the traditional information retrieval way.

Firstly, a direct answer search engine can be con-

structed [57], [58]. As it shown in Fig. 8, there are 2 kinds

of relations, they are “is a” and “object property”. “is a” is

the taxonomic relations which indicate a containment relation

between 2 concepts [59]. For example, the taxonomic rela-

tion like “pi-db” -> “relational_database” -> “database” in

Fig. 8. “pi-db” is subclass of “relational_database”, and “rela-

tional_database” is subclass of “database”. So we can derive

if we have a sentence like "The employees’ information is

put in firebird", this sentence "The employees’ information is

put in database" is also right. The “object property” is the non-

taxonomic relations, these relations present some properties of

the concepts. So if there is a query like: “Which database can
run on Unix and be written in C++” From the query we can

extract the VP “run on” and “be written in”, and the concepts

“database”, “Unix” and “C++”. Then the “firebird” will be

recommended directly. This direct answer search engine can

answer many questions which ask about a specific concept and

64

database

relational_database

firebird

C++

unix

uib

prime_academic_operating_system

server_platforms

in-house_operating_system

xmp

sas bigbluebutton

microsoft_language

iso_international_standardis

is_written_in

running_on

use

is

is_standardized_in

supports

is_available_for runs_on

is_commonly_found_on

was_developed_as

became

foxtoolkit

upnpx

pi-db

data_warehouse

core_data

cocoa

timestamp

is

is_written_in
is_written_in

is_written_in

consists_of

openscenegraph
is_written_in

SuperClass SubClassis-a

Class Classobject_property

Legend

Fig. 8. An Example of Knowledge Graph Generated by HDSKG

help developers to find available technologies without reading

many webpages.

We can also use this knowledge graph to the semantic search

engine because it links the concepts across query key words,

documents, databases, webpages, etc. via semantic modeling..

For example, the phrase “firebird is written in C++” and

the phrase “C++ is microsoft language” are extracted from

different webpages. There is no link between the concept

“firebird” and the concept “microsoft language”. But in the

knowledge graph, these two concepts connect to “C++”. So in

the search results, the ranking algorithms should concern the

weight to “microsoft language” related webpages when search

“firebird”.

C. Implications for Knowledge Representation

Our knowledge graph is also a structural knowledge repre-

sentation which can be used to do data documentation and

enrich search result pages. Actually Stack Overflow paid effort

on it already. There is a new online function which is still

under beta test named documentation1. In this part, Stack

Overflow organizes the information of each tag structural like

“different version”, “important functions” and “useful code

snippets”, etc. Compare to the traditional tagWiki, developer

can easy to locate the information they want. But this do-

cumentation is contributed by the users of Stack Overflow

manually, it’s low efficient and subjective. Our knowledge

graph can assist to enrich the documentation. Because it is

extracted from the materials which is contributed by many de-

velopers, with the “corpus features” we used to the classifier in

section. III-E1, the subjective relation triples can be removed.

And with the result like the 5 “is written in” relations in Fig. 8,

we can enrich the documentation of “C++” with the tools or

libraries which are written by “C++”.

Our knowledge graph also can be used to enrich the search

result. For example, if you search “iso standard”, as the result

in Fig. 8, we will recommend “C++” which is standardized

by “iso standard”.

1http://stackoverflow.com/documentation

VI. CONCLUSION AND FUTURE WORK

Knowledge graph integrates structural information of con-

cepts across multiple information sources, and links these

concepts together. It is useful in many domains such as search

result ranking, recommendation, exploratory search, etc. In

this paper, an automatic method named HDSKG is proposed

to discover domain specific concepts and their relation triples

from the content of webpages. By incorporation of the depen-

dency parser with rule-based method, we get the candidate

relations triple candidates with high precision and recall. And

by utilizing the self-training SVM classifier, we can estimate

the domain relevance of the candidate relation triples.

However, even we already proposed six different particular

scenarios, due to the dynamic of natural language, there

are still some scenarios HDSKG can’t deal with very well.

For example, the “of” in NP sometimes make the concept

very long like “Middleware is a framework of hooks into

Django’s request or response processing.”. But if we delete

the content after “of”, some mistakes will be caused like

“Windows is a family of graphical operating-systems" will

extract (Windows; is; family), it is obviously incorrect. There

are also some concepts which refer to same meaning but

different expressions, like “python” and “python_language”,

“operation_system” and “operating_system”, etc). In the future,

we plan to do the concepts and verb phrase clustering to unify

the expressions and optimize our system to deal with more

particular scenarios.

VII. ACKNOWLEDGEMENTS

This work was conducted within the Rolls-Royce@NTU

Corporate Lab with support from the National Research

Foundation (NRF) Singapore under the Corp Lab@University

Scheme. This research is partially supported by the National

Research Foundation, Prime Minister’s Office, Singapore un-

der its IDM Futures Funding Initiative.

65

REFERENCES

[1] C. Chen, Z. Xing, and L. Han, “Techland: Assisting technology lands-
cape inquiries with insights from stack overflow,” 32nd ICSME. IEEE,
2016.

[2] K. Bollacker, C. Evans, P. Paritosh, T. Sturge, and J. Taylor, “Freebase: a
collaboratively created graph database for structuring human knowledge,”
in Proceedings of the 2008 ACM SIGMOD international conference on
Management of data. ACM, 2008, pp. 1247–1250.

[3] F. Niu, C. Zhang, C. Ré, and J. W. Shavlik, “Deepdive: Web-scale
knowledge-base construction using statistical learning and inference.”
VLDS, vol. 12, pp. 25–28, 2012.

[4] F. M. Suchanek, G. Kasneci, and G. Weikum, “Yago: a core of semantic
knowledge,” in Proceedings of the 16th international conference on
World Wide Web. ACM, 2007, pp. 697–706.

[5] J. Fan, D. Ferrucci, D. Gondek, and A. Kalyanpur, “Prismatic: Indu-
cing knowledge from a large scale lexicalized relation resource,” in
Proceedings of the NAACL HLT 2010 first international workshop on
formalisms and methodology for learning by reading. Association for
Computational Linguistics, 2010, pp. 122–127.

[6] R. Padhye, D. Mukherjee, and V. S. Sinha, “Api as a social glue,”
in Companion Proceedings of the 36th International Conference on
Software Engineering. ACM, 2014, pp. 516–519.

[7] S. Auer, C. Bizer, G. Kobilarov, J. Lehmann, R. Cyganiak, and Z. Ives,
“Dbpedia: A nucleus for a web of open data,” in The semantic web.
Springer, 2007, pp. 722–735.

[8] J. Zhu, Z. Nie, X. Liu, B. Zhang, and J.-R. Wen, “Statsnowball: a
statistical approach to extracting entity relationships,” in Proceedings
of the 18th international conference on World wide web. ACM, 2009,
pp. 101–110.

[9] F. Wu and D. S. Weld, “Open information extraction using wikipedia,”
in Proceedings of the 48th Annual Meeting of the Association for
Computational Linguistics. Association for Computational Linguistics,
2010, pp. 118–127.

[10] O. Etzioni, M. Banko, S. Soderland, and D. S. Weld, “Open information
extraction from the web,” Communications of the ACM, vol. 51, no. 12,
pp. 68–74, 2008.

[11] Y. Lin, Z. Liu, M. Sun, Y. Liu, and X. Zhu, “Learning entity and relation
embeddings for knowledge graph completion.” in AAAI, 2015, pp. 2181–
2187.

[12] A. Carlson, J. Betteridge, B. Kisiel, B. Settles, E. R. Hruschka Jr,
and T. M. Mitchell, “Toward an architecture for never-ending language
learning.” in AAAI, vol. 5, 2010, p. 3.

[13] G. Angeli, M. J. Premkumar, and C. D. Manning, “Leveraging linguistic
structure for open domain information extraction,” Linguistics, no. 1/24,
2015.

[14] M. Pasca, D. Lin, J. Bigham, A. Lifchits, and A. Jain, “Organizing and
searching the world wide web of facts-step one: the one-million fact
extraction challenge,” in AAAI, vol. 6, 2006, pp. 1400–1405.

[15] J. C. de Almeida Biolchini, P. G. Mian, A. C. C. Natali, T. U. Conte,
and G. H. Travassos, “Scientific research ontology to support systematic
review in software engineering,” Advanced Engineering Informatics,
vol. 21, no. 2, pp. 133–151, 2007.

[16] P. Wongthongtham, E. Chang, T. Dillon, and I. Sommerville, “De-
velopment of a software engineering ontology for multisite software
development,” IEEE Transactions on Knowledge and Data Engineering,
vol. 21, no. 8, pp. 1205–1217, 2009.

[17] S. Subramanian, L. Inozemtseva, and R. Holmes, “Live api documenta-
tion,” in Proceedings of the 36th International Conference on Software
Engineering. ACM, 2014, pp. 643–652.

[18] H. S. Delugach, “Specifying multiple-viewed software requirements with
conceptual graphs,” Journal of Systems and Software, vol. 19, no. 3, pp.
207–224, 1992.

[19] H.-J. Happel and S. Seedorf, “Applications of ontologies in software
engineering,” in Proc. of Workshop on Sematic Web Enabled Software
Engineering"(SWESE) on the ISWC. Citeseer, 2006, pp. 5–9.

[20] M. Banko, M. J. Cafarella, S. Soderland, M. Broadhead, and O. Etzioni,
“Open information extraction from the web.” in IJCAI, vol. 7, 2007, pp.
2670–2676.

[21] J. Betteridge, A. Carlson, S. A. Hong, E. R. Hruschka Jr, E. L. Law, T. M.
Mitchell, and S. H. Wang, “Toward never ending language learning.” in
AAAI Spring Symposium: Learning by Reading and Learning to Read,
2009, pp. 1–2.

[22] O. Etzioni, M. Cafarella, D. Downey, S. Kok, A.-M. Popescu, T. Shaked,
S. Soderland, D. S. Weld, and A. Yates, “Web-scale information ex-
traction in knowitall:(preliminary results),” in Proceedings of the 13th
international conference on World Wide Web. ACM, 2004, pp. 100–110.

[23] G. Kasneci, M. Ramanath, F. Suchanek, and G. Weikum, “The yago-
naga approach to knowledge discovery,” ACM SIGMOD Record, vol. 37,
no. 4, pp. 41–47, 2009.

[24] R. Krishnamurthy, Y. Li, S. Raghavan, F. Reiss, S. Vaithyanathan, and
H. Zhu, “Systemt: a system for declarative information extraction,” ACM
SIGMOD Record, vol. 37, no. 4, pp. 7–13, 2009.

[25] N. Nakashole, M. Theobald, and G. Weikum, “Scalable knowledge
harvesting with high precision and high recall,” in Proceedings of the
fourth ACM international conference on Web search and data mining.
ACM, 2011, pp. 227–236.

[26] J. Zhu, H. Wang, and B. Shen, “Software. zhishi. schema: A software
programming taxonomy derived from stackoverflow.”

[27] J. Zhu, B. Shen, X. Cai, and H. Wang, “Building a large-scale software
programming taxonomy from stackoverflow,” in SEKEąŕ2015: 27th
International Conference on Software Engineering and Knowledge En-
gineering, pp. 391–396.

[28] A. Barua, S. W. Thomas, and A. E. Hassan, “What are developers talking
about? an analysis of topics and trends in stack overflow,” Empirical
Software Engineering, vol. 19, no. 3, pp. 619–654, 2014.

[29] C. Chen and Z. Xing, “Mining technology landscape from stack over-
flow,” 10th ESEM. IEEE/ACM, 2016.

[30] H. Li, I. Councill, W.-C. Lee, and C. L. Giles, “Citeseerx: an architecture
and web service design for an academic document search engine,” in
Proceedings of the 15th international conference on World Wide Web.
ACM, 2006, pp. 883–884.

[31] P. Szekely, C. A. Knoblock, J. Slepicka, A. Philpot, A. Singh, C. Yin,
D. Kapoor, P. Natarajan, D. Marcu, K. Knight et al., “Building and
using a knowledge graph to combat human trafficking,” in International
Semantic Web Conference. Springer, 2015, pp. 205–221.

[32] J. Pujara, H. Miao, L. Getoor, and W. Cohen, “Knowledge graph
identification,” in International Semantic Web Conference. Springer,
2013, pp. 542–557.

[33] C. Z. Mooney, R. D. Duval, and R. Duval, Bootstrapping: A nonpara-
metric approach to statistical inference. Sage, 1993, no. 94-95.

[34] M. Schmitz, R. Bart, S. Soderland, O. Etzioni et al., “Open language
learning for information extraction,” in Proceedings of the 2012 Joint
Conference on Empirical Methods in Natural Language Processing
and Computational Natural Language Learning. Association for
Computational Linguistics, 2012, pp. 523–534.

[35] A. Fader, S. Soderland, and O. Etzioni, “Identifying relations for
open information extraction,” in Proceedings of the Conference on
Empirical Methods in Natural Language Processing. Association for
Computational Linguistics, 2011, pp. 1535–1545.

[36] S. L. Abebe and P. Tonella, “Towards the extraction of domain concepts
from the identifiers,” in 2011 18th Working Conference on Reverse
Engineering. IEEE, 2011, pp. 77–86.

[37] J. Hoffart, F. M. Suchanek, K. Berberich, and G. Weikum, “Yago2:
A spatially and temporally enhanced knowledge base from wikipedia,”
Artificial Intelligence, vol. 194, pp. 28–61, 2013.

[38] J. Hirschberg and C. D. Manning, “Advances in natural language
processing,” Science, vol. 349, no. 6245, pp. 261–266, 2015.

[39] A. M. Rush, S. Chopra, and J. Weston, “A neural attention model for
abstractive sentence summarization,” arXiv preprint arXiv:1509.00685,
2015.

[40] H. He, K. Gimpel, and J. Lin, “Multi-perspective sentence similarity
modeling with convolutional neural networks,” in Proceedings of the
2015 Conference on Empirical Methods in Natural Language Proces-
sing, 2015, pp. 1576–1586.

[41] C. D. Manning, M. Surdeanu, J. Bauer, J. R. Finkel, S. Bethard, and
D. McClosky, “The stanford corenlp natural language processing toolkit.”
in ACL (System Demonstrations), 2014, pp. 55–60.

[42] K. Toutanova and C. D. Manning, “Enriching the knowledge sources
used in a maximum entropy part-of-speech tagger,” in Proceedings of
the 2000 Joint SIGDAT conference on Empirical methods in natural lan-
guage processing and very large corpora: held in conjunction with the
38th Annual Meeting of the Association for Computational Linguistics-
Volume 13. Association for Computational Linguistics, 2000, pp. 63–70.

[43] J. Nivre, M.-C. de Marneffe, F. Ginter, Y. Goldberg, J. Hajic, C. D.
Manning, R. McDonald, S. Petrov, S. Pyysalo, N. Silveira et al.,
“Universal dependencies v1: A multilingual treebank collection,” in Pro-

66

ceedings of the 10th International Conference on Language Resources
and Evaluation (LREC 2016), 2016.

[44] S. Schuster and C. D. Manning, “Enhanced english universal depen-
dencies: An improved representation for natural language understanding
tasks,” in Proceedings of the 10th International Conference on Language
Resources and Evaluation, 2016.

[45] C. Grover and R. Tobin, “Rule-based chunking and reusability,” in Pro-
ceedings of the Fifth International Conference on Language Resources
and Evaluation (LREC 2006), 2006.

[46] T. Zhang, F. Damerau, and D. Johnson, “Text chunking based on
a generalization of winnow,” Journal of Machine Learning Research,
vol. 2, no. Mar, pp. 615–637, 2002.

[47] M.-C. De Marneffe and C. D. Manning, “Stanford typed dependencies
manual,” Technical report, Stanford University, Tech. Rep., 2008.

[48] M.-C. De Marneffe, T. Dozat, N. Silveira, K. Haverinen, F. Ginter,
J. Nivre, and C. D. Manning, “Universal stanford dependencies: A cross-
linguistic typology.” in LREC, vol. 14, 2014, pp. 4585–92.

[49] J. Leskovec, A. Rajaraman, and J. D. Ullman, Mining of massive
datasets. Cambridge University Press, 2014.

[50] J. Ramos, “Using tf-idf to determine word relevance in document
queries,” in Proceedings of the first instructional conference on machine
learning, 2003.

[51] P. Velardi, M. Missikoff, and R. Basili, “Identification of relevant
terms to support the construction of domain ontologies,” in Proceedings
of the workshop on Human Language Technology and Knowledge
Management-Volume 2001. Association for Computational Linguistics,
2001, p. 5.

[52] N. Voskarides, E. Meij, M. Tsagkias, M. de Rijke, and W. Weer-
kamp, “Learning to explain entity relationships in knowledge graphs,”

In Proceedings of the 53rd Annual Meeting of the Association for
Computational Linguistics and The 7th International Joint Conference
on Natural Language Processing of the Asian Federation of Natural
Language Processing (ACL-IJCNLP 2015), p. 11, 2015.

[53] C. D. Manning, M. Surdeanu, J. Bauer, J. Finkel, S. J. Bethard,
and D. McClosky, “The Stanford CoreNLP natural language
processing toolkit,” in Association for Computational Linguistics
(ACL) System Demonstrations, 2014, pp. 55–60. [Online]. Available:
http://www.aclweb.org/anthology/P/P14/P14-5010

[54] R. Řehůřek and P. Sojka, “Software Framework for Topic Modelling
with Large Corpora,” in Proceedings of the LREC 2010 Workshop on
New Challenges for NLP Frameworks. Valletta, Malta: ELRA, May
2010, pp. 45–50, http://is.muni.cz/publication/884893/en.

[55] S. Bird, “Nltk: the natural language toolkit,” in Proceedings of the
COLING/ACL on Interactive presentation sessions. Association for
Computational Linguistics, 2006, pp. 69–72.

[56] J. Webber, “A programmatic introduction to neo4j,” in Proceedings of
the 3rd annual conference on Systems, programming, and applications:
software for humanity. ACM, 2012, pp. 217–218.

[57] Y. WHAN KIM and J. H. Kim, “A model of knowledge based informa-
tion retrieval with hierarchical concept graph,” Journal of Documenta-
tion, vol. 46, no. 2, pp. 113–136, 1990.

[58] M. Joshi, U. Sawant, and S. Chakrabarti, “Knowledge graph and corpus
driven segmentation and answer inference for telegraphic entity-seeking
queries.” in EMNLP, 2014, pp. 1104–1114.

[59] M. A. Hearst, “Automatic acquisition of hyponyms from large text
corpora,” in Proceedings of the 14th conference on Computational
linguistics-Volume 2. Association for Computational Linguistics, 1992,

pp. 539–545.

67

