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ABSTRACT

Part-of-speech (POS) tagging performance degrades on out-
of-domain data due to the lack of domain knowledge. Soft-
ware engineering knowledge, embodied in textual documen-
tations, bug reports and online forum discussions, is ex-
pressed in natural language, but is full of domain terms,
software entities and software-specific informal languages.
Such software texts call for software-specific POS tagging.
In the software engineering community, there have been sev-
eral attempts leveraging POS tagging technique to help solve
software engineering tasks. However, little work is done for
POS tagging on software natural language texts.

In this paper, we build a software-specific POS tagger, called
S-POS, for processing the textual discussions on Stack Over-
flow. We target at Stack Overflow because it has become
an important developer-generated knowledge repository for
software engineering. We define a POS tagset that is suit-
able for describing software engineering knowledge, select
corpus, develop a custom tokenizer, annotate data, design
features for supervised model training, and demonstrate that
the tagging accuracy of S-POS outperforms that of the Stan-
ford POS Tagger when tagging software texts. Our work
presents a feasible roadmap to build software-specific POS
tagger for the socio-professional contents on Stack Over-
flow, and reveals challenges and opportunities for advanced
software-specific information extraction.

CCS Concepts

eSoftware and its engineering — Software maintenance
tools; eInformation systems — Social networking sites;

Keywords

Mining software repositories; information extraction; natu-
ral language processing; part-of-speech tagging.
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1. INTRODUCTION

Software engineering is a knowledge-intensive work. With
the advent of Web 2.0, programming-specific Q&A sites,
such as Stack Overflow, become a prominent platform where
developers learn and share knowledge. In fact, through years
of accumulation, Stack Overflow has grown into a tremen-
dous repository of user-generated content that complements
traditional technical documentations [21]. The questions,
answers and comments in Stack Overflow are being used
extensively by developers for knowledge acquisition [15].

Stack Overflow posts * are in the form of textual discussions.
It would greatly benefit developers’ information seeking pro-
cess if we could have advanced information extraction tech-
niques dedicated for exploiting the knowledge base of Stack
Overflow, such as providing direct answers to common pro-
gramming issues, named entity extraction in search queries,
etc. To enable these advanced down-stream applications,
we must first have a part-of-speech (POS) tagger tailored
specifically for the emerging genre of Stack Overflow texts.

Part-of-speech (POS) tagging is a foundational step in mod-
ern natural language processing (NLP) pipelines. It is ap-
plicable to many NLP tasks including named entity recogni-
tion and information extraction [22]. However, when apply-
ing existing POS taggers on software artifacts that are also
written in natural language, the tagging performance drops
significantly. For example, the accuracy of the NLTK Tag-
ger % decreases from 97% on regular English corpus to only
85% when tagging software bug reports, as studied in [25].
Therefore, we need a domain-specific POS tagger suitable
for processing software-specific corpus. However, little work
has been done for building a software-specific POS tagger
for software engineering research.

In this paper, we perform an experimental study using the
textual content of Stack Overflow posts to build a software-
specific POS tagger. We are faced with two challenges.

First, the discussions among developers on Stack Overflow
are both technical and social. Some example Stack Over-
flow posts are shown in Table 1. We highlight tokens that
are tagged incorrectly by the State-of-the-art tagger (Stan-
ford Tagger v3.5.2) in boldface. On the one hand, software-
specific concepts, terminologies and entities are extensively

n this paper, a Stack Overflow post refers to a question
(body and title), or an answer, or a comment.

*http://www.nltk.org/



Post Type | Post ID | Texts State-of-the-art Tagger Mistakes
question s S 1. Incorrectly tag ‘Availability’ and
1 title 8318233 | JQuery Availability on Maven Repositories ‘Repositories’ as Proper Noun
9 question 9252703 What’s the difference between the list 1. Improper tokenization of APIs
body methods append() and extend()? 2. Tag API names as Verb
1. Tag ‘down-vote’ as Verb
at the danger getting a down-vote python 2. Tag ‘python’ as Common Noun
3 | answer 143400 is easier as BASIC :-) 3. Tag ‘BASIC’ as Adjective
4. Emoticon tokenization
. . 1. Tag API ‘equals’ as Verb
4 | comment 271576 @Supericy Basically yes, but equals (or 2. Tag terminology ‘null’ as Adjective
whatever method) has to check for null anyway. . .
3. At-mention recognition

Table 1: Examples of Stack Overflow Texts

referenced in the discussions, such as the words “JQuery”,
“Maven” and “BASIC” highlighted in Table 1. A word can
have a different POS tag than normal in a software-specific
context. For example, normally the POS of the word “equals”
is verb, but here “equals” refers to a programming API,
which is a software-specific proper noun. The API name
“append()”, which should be considered as one token, is split
into 3 tokens, i.e., “append”, “(” and “)”, and “append” is
tagged as a verb. On the other hand, as a social Q&A
site, Stack Overflow texts are ungrammatical and noisy (ty-
pos occur regularly). Stack Overflow involves many social-
media-style conversations, e.g., the usage of at-mentions,
emoticons, and abbreviations.

Second, building a POS tagger for software-specific natu-
ral language corpus requires annotated software engineering
corpus or empirical rules. However, while there are many
well-annotated corpora for traditional POS taggers, e.g., the
Penn Treebank (PTB) Project [16], there is no annotated
corpus dedicated for software engineering research. Creat-
ing a software engineering corpus is inevitable for building
a software-specific POS tagger, which requires substantial
human efforts.

To address these challenges, we propose S-POS, an English
POS tagger that is designed for processing the textual con-
tents of Stack Overflow. Our key contributions are:

e We build a software-specific part-of-speech tagger. To
achieve this, we develop a software-specific POS tagset.
We customize a tokenizer targeting software artifacts.
We select and annotate corpus from Stack Overflow
posts. We adopt a machine learning based approach
using maximum entropy Markov model (MEMM) [17],
and develop features for model training.

We evaluate our POS tagger against Stanford Tagger.
We reduce the tagging error by 49.6% on POS tags
that have mappings in the PTB tagset [16] when com-
pared to pre-trained Stanford Tagger; and by 26.4%
on all POS tags we used when compared to re-trained
Stanford Tagger.

We provide our annotated corpus and trained models
to the software engineering community for validation
and further research.

The paper is structured as follows. We review related work
in Section 2. Section 3 presents the system working flow
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of our part-of-speech tagging tool. We describe our experi-
ments in Section 4, followed by discussions in Section 5. We
conclude our paper in Section 7.

2. RELATED WORK
2.1 POS Tagging in Software Engineering

In the software engineering community, there have been sev-
eral research efforts that leverage POS tagging to help solve
software engineering tasks, such as source code comprehen-
sion [11, 2, 5, 8], and software terminologies identification
[7, 24].

Capobianco et al. [7] identify nouns using an existing POS
tagger (TreeTagger [23]) to improve the performance of trace-
ability recovery. Similarly, Shokripour et al. [24] determine
words’ POS from bug reports to create a link to source code
files, also using an existing tagger (Annie Tagger [12]). In
[2, 5, 8], researchers apply POS tagging technique to source
code identifiers for better program comprehension. By com-
parison, we build a software-specific POS tagger dedicated
for processing software-specific natural language in Stack
Overflow that is both social and technical.

In [11], Gupta et al. build a rule-based POS tagger based
on WordNet [19] and some common naming conventions for
processing code identifiers. In contrast, our POS tagger pro-
cesses developers’ discussions on Stack Overflow, rather than
source code. And we use state-of-the-art machine learning
approach instead of traditional rule-based approach.

Tian et al. [25] compare the effectiveness of 7 popular POS
taggers on bug reports. They show that the accuracies of
these taggers on bug reports drop significantly. However,
they only compare the performance of existing POS tagging
tools when applied to software texts, while we build a work-
ing software-specific POS tagger.

2.2 Domain Adaption of POS Tagging

Our work also falls into the broad category of domain adap-
tion of POS tagging. For this line of research, Gimpel et
al. [9] customize a POS tagger for Twitter, a genre of social
media texts. Owoputi et al. [20] use word clustering to fur-
ther improve the tagging accuracy of [9]. Jiang et al. [13]
propose a cascaded linear model for joint Chinese word seg-
mentation and POS tagging. Lynn et al. [14] perform POS
tagging for social texts written in Irish. Compare to these



work, we contribute a POS tagger designed for processing
software-specific texts on community Q&A sites.

3. THE S-POS SYSTEM

3.1 Overview

To build a software-specific POS tagger handling Stack Over-
flow texts, the preliminaries involve:

e define a tagset that is suitable to describe the socio-

professional discussions on Stack Overflow (Section 3.2).

e determine the POS of certain tokens based on the
context of discussion and software domain knowledge
Data

(Section 3.4 and Section 3.5).
. ]—-[ Tokenizer ]
Processing

Evaluation
Data

Stack Overflow
questions,
answers, and

Training
Data

Figure 1: System Working Flow

In Figure 1, we show the system working flow of S-POS. We
start with data selection from Stack Overflow, we prepro-
cess the data and feed it into our custom tokenizer. Then,
the tokenized data is distributed to annotators for tag label-
ing. After annotation, the data is randomly divided into two
parts, one for model training, the other for model evaluation.
We use a machine learning based approach for POS tagging,
rather than relying on empirical rules, which have been used
in POS tagging for source code [11]. Rule-based approach
is possible for source code because legal code follows strict
syntax. However, it is almost impossible to develop a robust
rule set to build a POS tagger for Stack Overflow texts due
to the discussions’ social nature and informality. A word
can have many variations in Stack Overflow texts. For ex-
ample, we have seen the programming language “JavaScript”
being written as “js”, “JS”, “javascript”, “Javascript”, or even
a wrongly spelled “javasript” in Stack Overflow discussions.

Next, we describe our software-specific tagset, and then dis-
cuss each step in the working flow in detail.

3.2 Software-Specific Tagset

Table 2 shows the tagset we use to tag the POS of tokens in
Stack Overflow texts. Compared to the default PTB tagset
3, this tagset is simpler for annotators to learn, while is also
informative. Our tagset is a domain adaption of the tagset

SFull list of PTB tags: https://www.ling.upenn.edu/
courses,/Fall 2003 /1ing001 /penn_treebank_pos.html
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used in [9]. Most of the tags in Table 2 are groupings of
PTB tags [16]. The tag mappings between PTB tagset and
our tagset are summarized in the second column of Table 2.
For example, the PTB tags describing a common noun in-
clude ‘NN’ and ‘NNS’, which are mapped to our tag ‘N’. We
choose to use compound tags (‘Z’, ‘S’, ‘L’, ‘M, ‘Y”) [9], as we
find there are many nonstandard spellings in Stack Overflow
similar to Twitter. We also compile a set of Stack Overflow-
specific tags, including URLSs, programming operators, code
elements, emoticons and at-mentions.

Tag Description 4+ TagSet Examples
Mapping to PTB Tags

o pronoun (PRP, WP) you it me

N common noun (NN, NNS)  website outputs

- proper noun (NNP, NNPS) android c# ajax

Vv Verb (V*, MD) may is run ran

A adjective (J¥*) nice nicer nicest

R adverb (R*, WRB) when never safely

! interjection (UH) YEA haha ok

D determiner (WDT, a the which its
DT, WP$, PRPS$)

P subordinating conj. while to for
pre(post)position (IN,TO)

T verb particle (RP) out off up Up

X existential there (EX), there both
predeterminers (PDT)

& coordinating conj. (CC) and but

$ numeral (CD) five 5 1.2

R punctuation (. , : (1)) () ?

G misc, abbr., garbage, ie., %, (]
incorrect tokenizations
(FW, POS, SYM, LS)

Z " 4 possessive java’s android’s

S O/N + possessive book’s applet’s

L O/N + verbal what’s he’s I'm

M ~ + verbal Java’ll

Y X + verbal there’s all’s

= programming operators <l===

C self-defined code element var myClass foo

Q@ at-mention @user123

U URL references https://github.com

E emoticon :) -

Table 2: Software-specific POS Tagset. In the sec-
ond column, the tags in parentheses are the POS
tags in the PTB tagset.

Generally, a proper noun refers to a unique entity. For ex-
ample, the name of a person and the name of an organi-
zation are defined as proper nouns. In the world of soft-
ware engineering, the names of many software entities are
unique. An API in software engineering is analogical to
a person in life. A programming platform that hosts the
execution of different APIs is like an organization where
each of its components works collaboratively. Therefore,
in this paper, we define that programming languages (e.g.,
C, JavaScript), API names (including the name of package,



class, interface, method), platform names (e.g., Android),
library names (e.g., JUnit), framework names (e.g., Spring),
data format names (e.g., JSON), protocols (e.g., HTTP),
as proper nouns, because they are all unique entities in
software engineering context. We consider domain termi-
nologies, programming operations and concepts as common
nouns. For example, in the phrase “java plugin”, the pro-
gramming language “java” is a proper noun, while the do-
main term “plugin” is considered as a common noun.

3.3 Dataset Preparation

This paper aims to implement a software-specific POS tag-
ger using supervised learning. We use questions that tagged
with the <java> tag and the answers and comments of these
questions for an experimental study. Specifically, we ran-
domly select 525 Stack Overflow posts (26,144 tokens after
data preprocessing and tokenization) that are tagged with
<java> from Stack Overflow official data dump released on
March 16th, 2015. Note that only Stack Overflow questions
have explicit tags. To obtain the Stack Overflow tags for an
answer or a comment, we retrieve the question it links to and
check the tags of the question. Stack Overflow posts are usu-
ally tagged with more than one tag. The tag <java> can co-
occur with other tags, e.g., <javascript>, <android>, etc.
Therefore, these <java>-tagged posts cover diverse knowl-
edge that are not restricted to purely Java.

In the official data dump of Stack Overflow, standalone
code snippets are surrounded with HTML tags <pre> and
</pre>. We remove these code snippets, because the tokens
of standalone code snippets do not have much POS informa-
tion. But we keep those small code elements embedded in
the discussion texts that are surrounded with <code> tags.
These small code elements mainly consist of APIs, program-
ming operators and simple self-defined variables for expla-
nation purpose. Removing them will impair the sentence’s
semantic meaning. Finally, we strip all other HTML tags
from the discussion texts.

3.4 Customized Tokenization

Our tokenizer is designed to handle texts with software-
specific entities. We do not split contractions or posses-
sives in compound tags shown in Table 2. Wo do not split
valid programming operators. We use regular expressions
to match valid URLs, at-mentions, and emoticons. We con-
sider separate parentheses, i.e., ‘(’ and ‘)’, as punctuation.
But parentheses, as well as dot, #, and $, that appear in
an API are considered as part of the API itself. In Table 3,
we show an example of S-POS’s tokenization results. Line
1 is the input sentence. Line 2 is the tokenization result
of Stanford Tagger. Line 3 is the tokenization done by our
S-POS tagger. As we can see, our tagger keeps compound
words as they are, and is able to recognize the Java API
Thread.sleep() as a whole.

3.5 Annotation

After tokenization, the data is ready for annotation. The an-
notation process involves 3 stages and is performed by 9 an-
notators who are all from computer science background with
4+ years of programming experience. To reduce the amount
of human efforts, we first pre-tag all tokens with Stanford
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What’s_the__equivalent._of__java’s_.
Thread.sleep() _in__js?

Input Sentence

Stanford Tagger | What__’s the__equivalent__of__java_'s__

Thread._.._sleep_(_)_in_js_.7

Our S-POS What’s__the_equivalent_of__java’s._.

Thread.sleep() —in_js_.7

Table 3: An Example of Our Tokenzation

Tagger using its english-bidirectional-distsim model. Then,
we convert the PTB tags tagged by Stanford Tagger to our
tags based on the mapping rules in Table 2. In this case,
annotators only have to correct the mistakes made by Stan-
ford Tagger, instead of annotating every token from scratch.
Before annotation, we give all annotators a 1-hour tutorial
on how to annotate the tokens to reach a consensus.

In Stage 1, each annotator is assigned with some Stack Over-
flow posts. We provide them a Web interface for annotation.
During this manual annotation process, we ask them to re-
port to us when there are tokenization errors or deficiencies,
and when certain tokens are hard to be tagged using our
tagset. After this stage, we use the feedbacks from our an-
notators to improve the tokenization, refine our tagset, and
clear up the annotated data. In Stage 2, we let annotators
cross validate the data, i.e., the same set of tokens from
Stage 1 will be examined by a different annotator in Stage
2. In Stage 3, a final sweep to all the annotated data is
made to improve the consistency of the tagging. We finally
select 50 Stack Overflow posts (876 tokens) from the pre-
pared dataset randomly and re-annotate them from scratch.
The purpose is to estimate the inter agreement of the anno-
tations among different annotators. We compare these 876
re-annotated tokens with their annotation results in Stage
2. Only 49 tokens are tagged differently. This results in an
inter agreement rate of 94.4%.

3.6 Supervised Learning

3.6.1 Model

Our tagging model is a linear maximum entropy Markov
model (MEMM) [17]. We use it due to its efficient training
capability and suitability for small labeled training set [20].
We adopt the implementation of MEMM in [20]. When
training a MEMM, the search method for optimization used
is OWL-QN [3].

Given a sequence of observations (tokens) Ox, ..., Op, we la-
bel them with tags (from our tagset) 11, ..., T , so as to max-
imize the conditional probability P(11,...,7,,|O1, ..., Oy). This

probability is factored into Markov transition probabilities
in MEMM:
P(Ty, ..., Ta|O1, ..., On) = [ [ P(Ti|Ti1, 0x)

i=1

(1)

For a certain ¢, the probability is modeled as a maximum
entropy classifier [4]:

P(Ti|Ti—1,0;) < exp(D  Aafa(Oi, T1)) (2)

where f,(O;,T;) are features for model training, consisting
of transition features and observation features. We use tran-



sition features for every two tags. We extract observation
features from the current token and its context in our anno-
tated corpus.

3.6.2  Feature Design

We extract various observation features from our annotated
corpus. We also add external resources as training features.

Orthographic features. We use regular expressions to
detect URLs, at-mentions and emoticons. Word shapes are
used as features. Specifically, the training model considers if
a token has capitalizations, whether a token contains digits,
slashes, hyphens, parentheses, etc. We use word prefixes and
suffixes of character length up to 10 as features.

Lexical and contextual features. We consider every to-
ken in the training set as a feature. To utilize the context
information, a window size [-1, 1] is used to add the previous
and the next one token as features. We also tried setting the
window size as [-2, 2] or [-3, 3], but found it not helpful for
performance improvement.

Traditional tag dictionary. We add features for all tags
in our tagset that each word occurs with in the corpora
used in the PTB project [16]. This is the same treatment as
Twitter-specific POS tagging in [9]. We use this traditional
tag dictionary as soft constraints during model training.

Stack Overflow tag dictionary. Stack Overflow’s official
data dump provides all tags that are used to label Stack
Overflow posts. Note this tag is not the POS tag. It is Stack
Overflow’s categorization of its own posts, such as <java>,
<javascript>, <spring>, etc. Each of these Stack Overflow
tags has its own POS. For example, the Stack Overflow tag
<java> is a proper noun, while <debugging> is a common
noun. We collect Stack Overflow tags that coexist with the
tag <java>, manually identify tags that are proper nouns,
and put them into a dictionary. Note Stack Overflow tags
are all written in lower-case. We revert these proper noun
tags into their formal written forms. For example, “java”
should be written as “Java” in formal cases, and “javascript”
should be “JavaScript”. We add this Stack Overflow tag
dictionary into MEMM training as hard constraints.

4. EVALUATION

In this section, we compare our S-POS tagger against Stan-
ford Tagger v3.5.2. Our experiments are designed to demon-
strate the need of a software-specific POS tagger, and to test
the efficacy of our feature set for POS tagging given a small-
sized annotated corpus.

4.1 Experimental Setup

The total number of tokens in our annotated corpus is 26,144
(525 Stack Overflow posts). In Table 4, we give the details of
this corpus. As we can see, the most used part-of-speeches
in Stack Overflow texts are verb and common noun, which
accounts for 18.2% and 16.5% of the total number of tokens,
respectively. The proportion of proper nouns used in Stack
Overflow is 6.9%, which is higher than that of another genre
of social texts — Twitter (the proportion is 6.4% according
to [9]). This can be explained by the fact that Stack Over-
flow discussions are centered around programming issues of
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software entities.

We randomly divide our annotated corpus into a training
set with 265 posts (13,196 tokens), and an evaluation set
(260 posts, 12,948 tokens), which is further divided into a
development set (100 posts, 5,535 tokens) and a test set
(160 posts, 7,413 tokens). The training set is used to train
a MEMM model. The development set is used for tuning
regularization parameters during MEMM training. The test
set is used for testing the accuracy of the trained model.

We first compare S-POS with pre-trained Stanford Tagger,
then we compare it with re-trained Stanford Tagger. To
compute the tagging accuracy of S-POS or Stanford Tag-
ger, we let it tag the unannotated version of the evaluation
corpus, and compare the tagging results with the annotated
corpus. For all the experiments comparing re-trained Stan-
ford Tagger and S-POS, the training data and evaluation
data used by both taggers are always the same.

4.2 Comparisons

4.2.1 Compare against Pre-trained Stanford Tagger

Pre-trained Stanford Tagger uses PTB tagset, while S-POS
uses the tagset in Table 2. So, we cannot compare the two
taggers directly. However, our tags and PTB tags have map-
pings to each other, except those compound tags and Stack
Overflow-specific tags, as shown in Table 2.

To ensure unbiased comparison, we only compare the tag-
ging accuracy of those tags that have direct mappings be-
tween PTB tagset and our tagset . Such comparison is sim-
ilar to the POS tagging comparison in the study of named
entity recognition in tweets [22]. For Stanford Tagger, we
use its pre-trained english-bidirectional-distsim model to tag
the unannotated version of our corpus and then translate the
resulted PTB tags into the tags in our tagset.

In Table 5, we show the comparison results between S-POS
and pre-trained Stanford Tagger. 10,622 tokens in the eval-
uation set have found direct mappings to PTB tags. As we
can see, for the test set, the tagging accuracy of our S-POS is
94.1% over these mapped tags, which improves pre-trained
Stanford Tagger by 5.8 percentage points. The error reduc-
tion, computed as (0.941 — 0.883)/(1 — 0.883) is as high as
49.6%. A similar level of error reduction (48%) is obtained
for the development set.

We further look into the tagging accuracy of individual tags.
In Figure 2, we show the most common errors made by the
pre-trained Stanford Tagger in the evaluation set (develop-
ment test and test set), and compare S-POS’s tagging error
rate against that of the Stanford Tagger. We see that one of
the most significant error reductions occurs for the case of
proper nouns. Pre-trained Stanford Tagger performs poorly
in recognizing software-specific proper nouns, its error rate
for proper nouns is 46%. In contrast, S-POS reports an er-
ror rate of 12% when tagging proper nouns. However, 12%
error rate is still higher than S-POS’s performance over all

4Mapped tag list includes: ON "V AR!DP T X & $. For
fair comparison, we choose not to map G (garbage), because
the PTB tags FW, POS, SYM, LS cover only a subset of
G. We do not map punctuations, because Stanford Tagger
escapes some punctuation characters like parentheses.




Tag O N R \Y A R D P & $ , G T X! [ Comp. [ SO
Tags’ Tags?
Count | 1601 | 4326 1809 | 4764 1209 | 1340 | 2809 3173 660 175 3208 229 199 343 299
% 6.1% | 16.5% | 6.9% | 18.2% | 4.6% | 5.1% | 10.7% | 12.1% | 2.5% | 0.7% | 12.3% | 0.9% | 0.8% 1.3% 1.1%
'Compound tags [9]: ZSL MY 2Stack Overflow-specific tags: = C @ U E
Table 4: Proportions of Different Tags in the Annotated Corpus
System Accuracy Error Reduction System Accuracy Error Reduction
Devel. | Test [ Devel. |  Test Devel. | Test [ Devel. | Test
Stanford Tagger | 87.5% | 88.3% - Stanford Tagger | 90.6% | 90.9% -
Our S-POS 93.5% | 94.1% | 48.0% | 49.6% Our S-POS 93.1% | 93.3% | 26.6% | 26.4%

Table 5: Comparing Tagging Accuracy with Pre-
trained Stanford Tagger. The number of tokens that
have direct mappings in the PTB tagset is 10,622.

mapped tags (7.6% error rate), which implies that there is
still space to enhance the identification of proper nouns. A
potential future work is to incorporate more domain knowl-
edge, such as adding tag dictionaries of official Oracle Java
APIs, Android official APIs into the feature set, to help
with proper noun identification. We observe similar mag-
nitudes of error reductions for common noun (N) and verb
(V). The tagging performances over them are both improved
from around 10% error rate to slightly more than 5%. Other
non-trivial error reductions include the cases of interjections
(!) and predeterminers (X), but the number of tokens with
these two tags only accounts for a very small proportion of
the tokens in total, as we can see from Table 4.

| ‘ I
v ! X

Tags

80%
70%
60%
50%
40%
30%
20%
10%

0%

m Stanford Tagger
S-POS

N: Common Noun
A: Proper Noun
V: Verb

'+ Interjection

X: Predeterminer

Tagging Error Rate

Figure 2: Tagging Error Rate for Individual Tag
Classes. We list out the most common tagging er-
rors S-POS reduced when compared to pre-trained
Stanford Tagger.

4.2.2  Compare against Re-trained Stanford Tagger

We re-train Stanford Tagger using our training set. Stan-
ford Tagger provides a set of features and optimization op-
tions for users to configure. Similar to [14, 9], the fea-
tures for re-training Stanford Tagger include: word shapes
in a [-3, 3] window (wordshapes(-3,3)), words in a [-2, 2]
window (bidirectional5words), prefix (prefiz(3)), suffix (suf-
fiz(3)), prefix-suffix pairs (prefizsuffiz(3)), and a word shape
dictionary (naacl2003unknowns). For Stanford Tagger, the
search method for optimization used during model training
is quasi-Newton, because of the unavailability of OWL-QN
in the released package [1]. This is different from our OWL-
QN setting as mentioned in Section 3.6.1.
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Table 6: Comparing Tagging Accuracy with Re-
trained Stanford Tagger

In Table 6, we compare the S-POS’s tagging accuracy to re-
trained Stanford Tagger over the tagset we defined in Table
2. For the test set, the tagging accuracy of S-POS is 93.3%,
which outperforms that of the re-trained Stanford Tagger
(90.9%). The error reductions for the test set and for the
development set are 26.4% and 26.6%, respectively.

A

Figure 3: Tagging Error Rate for Individual Tag
Classes. We list out the most common tagging er-
rors S-POS reduced when compared to re-trained
Stanford Tagger.

24%
" | mstanford Tagger

S-POS

N A \ R

Tags

20%

: Common Noun
: Proper Noun
Verb
Adverb
: Adjective

16%

12%

>3 < >z

8%

Tagging Error Rate

4%

0%

The tagging error rates of re-trained Stanford Tagger and
S-POS on individual tag classes are shown in Figure 3. We
see that the most common incorrect tag classes made by re-
trained Stanford Tagger are different from those shown in
Figure 2. We observe S-POS improves the tagging accuracies
of adjective (A) and adverb (R) over Stanford Tagger. For
the tagging of common noun (N), re-trained Stanford Tagger
delivers a similar performance to its pre-trained counterpart
(both report around 10% error rate). We can also see that
re-trained Stanford Tagger improves its tagging accuracies
on proper noun (7) and verb (V), but is still less accurate
compared to S-POS.

4.2.3 Feature Ablation

We also perform independent feature ablation experiments
to study the effect of individual feature(s) on tagging accu-
racy. In Table 7, we ablate one kind of feature(s) at one
time from our full feature set and test the resulting accu-
racy. We find that adding traditional tag dictionary and
Stack Overflow tag dictionary can boost tagging accuracy
by 1.6 and 0.7 percentage points, respectively. Prefixes and
suffixes features are the most important features in tagging
Stack Overflow texts, without which the tagging accuracy



drops to 91.3%. Contextual features (next word and pre-
vious word) turn out to have less impact on the accuracy.
Overall, we see that the absence of one particular feature
does not impair the tagging accuracy significantly. S-POS’s
tagging performance is contributed by the combined action
of all its features.

Features Accuracy
S-POS full-feature 93.3%
- without traditional tag dict. 91.7%
- without Stack Overflow tag dict. 92.6%
- without word shapes 92.2%
- without prefixes and suffixes 91.3%
- without contextual features 93.1%

Table 7: The Effects of Individual Feature(s)

4.2.4  Varying Training Data Size

We have shown that S-POS outperforms Stanford Tagger
when tagging Stack Overflow texts. The amount of anno-
tated tokens we used for model training in previous experi-
ments is fixed. In this section, we want to further understand
whether the tagging accuracy of S-POS could exceeds that of
Standford Tagger using a different amount of training data.
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Figure 4: Tagging Accuracy as a Function of Train-
ing Data Size

In Figure 4, we vary the size of the training data and show
the corresponding tagging error rate for both Stanford Tag-
ger and S-POS. The results indicate that, generally it holds
that tagging error rate decreases monotonically with the in-
crease of training data. Our S-POS tagger consistently out-
performs Stanford Tagger under different training data sizes.
The smaller the training data size, the larger accuracy im-
provements S-POS delivers compared to Stanford Tagger.
When the training data size grows up to more than 10,000
tokens, tagging error rate becomes relatively stable for both
S-POS and Stanford Tagger.

S. DISCUSSION
5.1 Utilizing Unlabeled Data

Generally, increasing the amount of training data can boost
tagging accuracy as we have shown in Section 4.2.4. Al-
though we have limited annotated Stack Overflow data, we
have access to enormous amount of unlabeled Stack Over-
flow texts. In this case, we can utilize unlabeled data through
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semi-supervised learning. T'wo popular approaches are boot-
strapping [10] and word clustering [6].

Owoputi et al. [20] and Ritter et al. [22] use word clustering
technique on unlabeled data and show word clustering can
improve POS tagging performance. We have performed hier-
archical word clustering on unlabeled Stack Overflow texts.
We clustered all the Stack Overflow posts that are tagged as
<java> (more than 1 million posts and more than 200 mil-
lion tokens). We used the resulting word vectors as training
features for MEMM. However, using word clustering impairs
the tagging accuracy in our system (the accuracy decreases
sharply to only 86%).

We find that word cluster can group lexical variations of
words. However, it also introduces user-generated garbage
and improperly tokenized tokens into the same cluster with
normal words. For example, the token “i” (lower case) has
been put into the same cluster as these tokens: “helloi”,
“buti”, “function.i”; “file_i”, “code.i”, etc. As a result, “i” is
often incorrectly tagged as garbage (G), common noun (N),
even preposition (P). We leave it to future work to identify
ways to overcome this word clustering issue. We will also
try bootstrapping method[10] using annotated data as seeds.
We will compare bootstrapping with word clustering to see
which approach could better assist the MEMM model when
we use them over the same amount of the unlabeled data.

5.2 Towards Advanced Software-specific In-
formation Extraction

POS tagging is a fundamental step in the pipeline of modern
information extraction systems. As we have shown in Sec-
tion 4.2.1, there are still needs to improve the identification
of proper nouns in Stack Overflow. These proper nouns rep-
resent unique software entities, such as API names, frame-
works, programming languages, etc. One potential down-
stream application that can be built upon our S-POS tagging
tool is a software-specific named entity recognition and lin-
ing system. We could use POS of words as a feature for the
model training of named entity recognition. An software-
specific entity recognition and linking system would allow
researchers to understand in depth the correlations between
various software entities, thereby enabling more advanced
software knowledge extraction and retrieval (semantic search
[18]) centered around software entities.

6. CONCLUSIONS

In this paper, we presented S-POS, a software-specific part-
of-speech tagging tool. We showed the challenges in build-
ing a software-specific POS tagger. We performed an ex-
perimental study using developer-generated texts on Stack
Overflow to build such a tagger. We demonstrated that
the accuracy of S-POS outperforms that of Stanford Tagger
when tagging Stack Overflow texts. The work flow presented
in this paper can be easily extended to cover more software
engineering data. Our work could benefit future research on
advanced software engineering knowledge extraction.

We are on a continuous effort to annotate more software
data. We release our annotated corpus and trained machine
learning models (available at https://drive.google.com/open?
id=0ByoLWPpAxGVFX3JrWFFDSXBSNDQ) to the soft-



ware engineering community for further research.
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