
BPMiner: Mining Developers’ Behavior Patterns from
Screen-Captured Task Videos

Jing Li†, Lingfeng Bao‡, Zhenchang Xing†, Xinyu Wang‡ and Bo Zhou‡

†School of Computer Engineering, Nanyang Technological University, Singapore
‡College of Computer Science, Zhejiang University, Hangzhou, China

†{jli030, zcxing}@ntu.edu.sg; ‡{lingfengbao, wangxinyu, bzhou}@zju.edu.cn

ABSTRACT
Many user studies of software development use screen-capture
software to record developers’ behavior for post-mortem anal-
ysis. However, extracting behavioral patterns from screen-
captured videos requires manual transcription and coding of
videos, which is often tedious and error-prone. Automatical-
ly extracting Human-Computer Interaction (HCI) data from
screen-captured videos and systematically analyzing behav-
ioral data will help researchers analyze developers’ behavior
in software development more effectively and efficiently. In
this paper, we present BPMiner, a novel behavior analysis
approach to mine developers’ behavior patterns from screen-
captured videos using computer vision techniques and ex-
ploratory sequential pattern analysis. We have implemented
a proof-of-concept prototype of BPMiner, and applied the
BPMiner prototype to study the developers’ online search
behavior during software development. Our study suggests
that the BPMiner approach can open up new ways to study
developers’ behavior in software development.

CCS Concepts
•Software and its engineering→Development frame-
works and environments; Software development pro-
cess management;

Keywords
Software development; HCI data; screen-captured video; de-
velopers’ behavior; online search~

1. INTRODUCTION
Researchers have investigated many perspectives of how de-
velopers seek and use information in software development
tasks [3, 14]. To study the developers’ information need-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copy-
rights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise,
or republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee. Request permissions from Permis-
sions@acm.org.
SAC 2016, April 04-08, 2016, Pisa, Italy
c⃝2016 ACM. ISBN 978-1-4503-3739-7/16/04. . . $15.00

DOI: http://dx.doi.org/10.1145/2851613.2851771

s and behavior in software development, researchers have
used human observer [23], think aloud [17], screen-captured
videos [4], software instrumentation [11] to collect the obser-
vational data about the developers’ information needs and
behavior in software development tasks. Among these data
collection methods, screen-captured videos provide a generic
and easy-to-deploy method to record the developers’ inter-
action with several software tools and application content
during the task, for example, the IDE and the edited code,
and the web browsers, search queries, and web pages visited.

Screen-captured videos can be analyzed to identify types of
information the developers explored [13], information for-
aging actions [17], and behavioral patterns [16]. Analyzing
screen-captured videos often requires significant efforts to
manually transcribe and code the videos. For example, Ko
and Myers [15] reported “analysis of video data by repeated
rewinding and fast-forwarding” in their study of the cause
of software errors in programming systems. Wang et al. [25]
reported that one hour task video often requires 6-8 hours
analysis time depending on the details of the information
to be transcribed. The manual analysis of screen-captured
videos often limits the use of video data in fine-grained study
of developers’ behavior in software development.

In this paper, we present BPMiner, a novel behavior analysis
approach to mine developers’ behavior patterns from screen-
captured videos. BPMiner uses our home-made computer-
vision-based video scraping tool (scvRipper [1]) to extract
time-series HCI data from screen-captured task videos. The
extracted time-series HCI data is a sequence of time-ordered
items. Each item captures the software tool(s) and applica-
tion content shown on the screen at a specific time in the
task video. BPMiner then mines behavior patterns in the
time-series HCI data using sequence abstraction, clustering,
statistical analysis and data visualization.

We have implemented a proof-of-concept prototype of BP-
Miner and applied the BPMiner prototype to study the devel-
opers’ online search behavior during software development.
We conducted a case study to evaluate the BPMiner proto-
type with the 29 hours of screen-captured task videos collect-
ed in the study [18] on the developers’ online search behavior
in the two software development tasks. Compared with the
high-level view of the developers’ online search process ob-
served from the manual analysis of the task videos in [18],
this study using BPMiner reveals micro-level online search
strategies and patterns during software development, which

1371

Timeline

Screen-Captured Video

scvRipper

Time-Series HCI Data

Software: Eclipse IDE
Code:
...
activePage.openEditor

(null,"unfinished.par

t.MyEditor");

...

Console:
IllegalArgumentException

Software: Eclipse IDE
Code:
...
activePage.openEditor(new

NullEditorInput(),"unfini

shed.part.MyEditor");

...

Console:
...

Software: Google Chrome
Query: Eclipse openEditor
URL:
https://www.google.com.sg/
#safe=strict&q=Eclipse+ope
nEditor

Software: Google Chrome
Query: Null
URL:
http://help.eclipse.org/indigo/
index.jsp?topic=%2Forg.eclip
se.platform.doc.isv%2Frefere
nce%2Fapi%2Forg%2Feclipse
%2Fui%2Fide%2FIDE.html

Software: Google Chrome
Query: Null
URL:
http://stackoverflow.com/
questions/19239393/eclipse-
plugin-how-to-open-file-in-
ide-by-code

1
t

2
t

3
t

4
t

x
t

n
t

Timeline

1
t

2
t

3
t

4
t

x
t

n
t

Software: Google Chrome
Query: Eclipse openEditor
URL:
https://www.google.com.sg/
#safe=strict&q=Eclipse+ope
nEditor

Figure 1: Extracting Time-Series HCI Data from Screen-Captured Videos by scvRipper

offer insights for enhanced software tools that can deepen
the integration of coding and web search in software devel-
opment [19]. This case study provides initial evidence that
the BPMiner approach can open up new ways to study de-
velopers’ behavior in software development.

The remainder of the paper is structured as follows. Sec-
tion 2 details the BPMiner approach and how it can be ap-
plied to analyze online search behavior. Section 3 reports
the evaluation of the BPMiner prototype. Section 4 discuss-
es the generalizability and characteristics of BPMiner. Sec-
tion 5 concludes the work and discusses our future plan.

2. APPROACH
The BPMiner approach consists of five modules. First, BP-
Miner extracts time-series HCI data from the screen-captured
task videos (Module 1). Then, BPMiner segments the time-
series HCI data into sessions based on prosodic or semantic
markers in the data (Module 2). Next, BPMiner extracts a
set of features that can represent the key characteristics of
the sessions (Module 3). After that, BPMiner clusters the
sessions into groups to facilitate the discovery of behavior
patterns (Module 4). Finally, BPMiner mines behavior pat-
terns by statistical analysis and data visualization (Module
5).

2.1 Time-Series HCI Data Extraction
A screen-captured video is a sequence of time-ordered screen-
shots that a screencasting software (e.g., Snagit1) takes at
a given time interval (often 1/30-1/5 second). To study the
developers’ behavior in software development using screen-
captured task videos, the first step of BPMiner is to extract
time-series HCI data from the screenshots of the task videos.
To that end, BPMiner uses our home-made video scraping
tool scvRipper [1]. The time-series HCI data BPMiner ex-
tracts from the video is a sequence of time-ordered items.

Definition 1 (Item). An item is an application with
distinct content in the time-series HCI data.

An item identifies which software the developer uses at what
time and with which content. It has two attributes: appli-
cation type and a set of application content (can be empty).

1http://www.techsmith.com/snagit.html

We denote an item as Type⟨Content⟩. As such, an item is
associated with a list of time stamps that record the time of
all the occurrence of the item in the time-series HCI data.

Fig. 1 illustrates the input and output of the scvRipper tool
in this setting. The screencasting software will record the
developer’s working process as a sequence of screenshots as
shown in the upper part of Fig. 1. Given this task video,
the scvRipper tool can automatically extract the time-series
HCI data from the video as shown in the lower part of Fig. 1.

In the time-series HCI data shown in Fig. 1, two type-
s of items can be defined: Eclipse IDE (IDEItem or II)
and web browser (BrowserItem or BI). An IDEItem’s con-
tent can contain a code fragment and a console output. A
BrowserItem’s content can contain an URL and a search
query. We categorized the web sites that the developers fre-
quently visit into seven web categories: search engines (SE),
document sharing sites (DS), technical tutorials (TT), top-
ic forums (TF), code hosting sites (CH), Q&A sites (QA),
and API specifications (API) [18]. Thus, a BrowserItem
can be further categorized into one of these seven web cat-
egories based on the web site of its URL. For example, the
BrowserItems at time t2, t3 and tx will be categorized as
search engines (SE), API specifications (API), and Q&A
sites (QA), respectively.

2.2 Session Segmentation
The next step of BPMiner is to segment the time-series HCI
data into meaningful sessions for further analysis. Depend-
ing on the purpose of the study, time-series HCI data can be
segmented based on prosodic or semantic markers relevant
to the study.

To study the developers’ online search behavior during soft-
ware development, BPMiner can segment the time-series H-
CI data into search sessions based on the occurrence of dis-
tinct search queries (i.e., semantic markers) over time, as
defined below. The search sessions identify the time periods
in which developers search for different information.

Definition 2 (Search Session). A search session is
a sequence of items between a search engine (SE) BrowserItem
with query Q1 and the subsequent search engine BrowserItem
with a different query Q2.

1372

Timeline

Search Session 1

1
t

2
t

3
t

4
t

5
t

6
t

7
t

8
t

9
t

10
t

11
t

12
t

13
t

14
t

15
t

Search Session 2

Items

Figure 2: An Illustrative Example of Search Sessions

Table 1: 12 Features from Each Search Session
Features Content Usage Application Usage

Overall features

NUMITEMS

NUMIDEBROWSERSWITCHES

DURATION
Web browser features

NUMBROWSERITEMS

NUMWEBCATEGORIES

NUMKEYWORDS

NUMNEWURLS

NUMCATEGORYSWITCHES

NUMWEBPAGESWITCHES

BROWSERDURATION
IDE features

NUMIDEITEMS

IDEDURATION

Given the sequence of all the items ordered by their appear-
ance time stamps, BPMiner can segment the sequence into
a sequence of search sessions by subsequent search engine
BrowserItems with different queries. Fig. 2 shows an ex-
ample of two search sessions segmented by the three search
engine BrowserItems with different queries, i.e., BI⟨SE,Q1⟩
at t1, BI⟨SE,Q2⟩ at t10, and BI⟨SE,Q3⟩ at t15.

2.3 Session Representation
To characterize search sessions, BPMiner can use a feature
space based on a set of descriptive statistics of application
usage and content usage in search sessions. In the proof-
of-concept prototype, BPMiner can automatically extract 12
features from search sessions, which were summarized in Ta-
ble 1.

Among these 12 features, 6 features represent content us-
age in a search session: NumItems, NumBrowserItem-
s, NumWebCategories, NumKeywords, NumNewURL-
s, NumIDEItems. The other 6 features represent applica-
tion usage and exploration behavior in a search session: Nu-
mIDEBrowserSwitches, Duration, NumCategorySwitch-
es, NumWebPageSwitches, BrowserDuration, IDEDu-
ration.

The NumItems, NumBrowserItems and NumIDEItems
counts the number of items, BrowserItems and IDEItems in
a search session, respectively. The Duration, Browser-
Duration and IDEDuration are the time duration (min-
utes) of a search session and the time spent on BrowserItems
and IDEItems in a session. The NumKeywords counts the
number of keywords in the query of a search session. The
NumNewURLs counts the number of non-search-engine URL-

s in a search session that are not visited before. The rest
Num...Switches features count the number of item switch-
ings as defined below.

Definition 3 (Item Switching). An item switching is
the switching between two consecutive items with different
attributes.

Given the sequence of all the items ordered by their appear-
ance time stamps, BPMiner can identify the switchings be-
tween IDE and web browser (i.e., an IDEItem followed by a
BrowserItem or a BrowserItem followed by an IDEItem). It
can also identify the switchings between different web cate-
gories (i.e., a BrowserItem with one web category followed by
a BrowserItem with another web category), and the switch-
ings between different web pages (i.e., a BrowserItem with
one URL followed by a BrowserItem with another URL).

2.4 Session Clustering
In many situations, individual sessions carry only limited
information about behavior patterns. We need to cluster
similar sessions such that behavior pattern can emerge from
clusters of sessions. What type of clustering techniques to
use depends on the nature of the data and the cost and
benefits of data labelling.

Assume that BPMiner extracts code fragments and error
messages from the IDE, and web page content from the we-
b browser. It can use topic modeling techniques such as
Latent Dirichlet Allocation (LDA) [2] to cluster search ses-
sions based on the topics of code fragments, error messages,
and web page content that the developer works on in the
sessions. If think aloud [24] protocol is adopted, record-
ed speech information may be analyzed automatically using
speech recognition techniques [21], and then used as labels
of the IDE and browser content. BPMiner can then use su-
pervised clustering techniques such as Labelled LDA [22] or
Explicit Semantic Analysis [5] to cluster search sessions.

2.5 Pattern Discovery
Once sessions are clustered, we can use data mining tech-
niques (e.g., sequential pattern mining [7]), statistical anal-
ysis (e.g., Markov model, statistical testing), and data visu-
alization (e.g., heat map, timeline plot, parallel coordinates,
star plot) to discover patterns in session clusters.

For example, to study the developers’ online search behavior
during software development, BPMiner can integrate the fol-
lowing statistical analysis methods and data visualizations
that are widely supported in data analysis libraries such as
Matlab [9] and R [10]. In the prototype, we use heat map
and timeline plot to compare when the developers perfor-
m what type of search sessions and how their online search
unfolded in different development tasks. We can consider
search sessions as subjects, different types of development
tasks and clusters of search sessions as independent vari-
ables, and the 12 features of search session as dependent
variables. BPMiner can then perform Multivariate ANalysis
of VAriance (MANOVA) analysis [6] to test the between-
subjects effect of tasks, search session clusters, and the com-
bination of different levels of tasks and search session clus-
ters (i.e., Task×SessionType interaction) on the 12 features
of search sessions.

1373

3. EMPIRICAL EVALUATION
To evaluate if the proposed BPMiner approach can help
us mine developers’ behavior patterns from screen-captured
videos, we have implemented a proof-of-concept prototype
of BPMiner and applied the prototype to study the devel-
opers’ online search behavior during software development.
In this evaluation, we aim to use the BPMiner prototype to
answer the following two research questions regarding the
developers’ online search behavior:

RQ1 Are there latent types of search sessions? What are
commonalities and differences of different types of search
sessions?

RQ2 How do different types of tasks and different types of
search sessions affect the developers’ online search be-
havior?

3.1 Dataset
This evaluation used the task videos collected in a study
of developers’ online search behavior during software devel-
opment [18], which involved two types of software develop-
ment tasks. The first task (Task1) is to develop a new P2P
chat software. The Task1 requires the knowledge about Ja-
va multi-threading, socket APIs, and GUI framework (e.g.,
Java Swing). The second task (Task2) is to maintain an
existing Eclipse editor plugin. The Task2 includes two sub-
tasks. The first subtask is to fix two bugs in the exist-
ing implementation. To fix these two bugs, developers need
knowledge about Eclipse editor API and plugin configura-
tion. The second subtask asks developers to extend exist-
ing editor plugin with file open/save/close features and file
content statistics (e.g., word count). This subtask requires
developers to program to Eclipse editor and view extension
points (e.g., EditorPart).

11 graduate students were recruited in the first task, and
13 different graduate students were recurited in the second
task. The developers were asked to work on the development
task in a 2-hours session. They were allowed to end the task
anytime during the session. All the developers used Win-
dows 7 or newer operating systems. They used Eclipse3.6
(or newer) or MyEclipse8.0 (or newer). They used Google
Chrome, Mozilla Firefox, or Internet Explorer to browse the
Internet.

The developers were instructed to use a screencasting soft-
ware to record their task process once they started working
on the assigned task. These screen-captured task videos
were the primary input for this study. The task videos of 3
developers in the first task and the task video of 1 developer
in the second task were corrupted. As such, this study an-
alyzed the task videos of 8 developers in the first task and
the task videos of 12 developers in the second task.

3.2 RQ1: Search Session Commonalities and
Differences

The BPMiner prototype identifies 168 search sessions in the
extracted time-series HCI data. It computes the 12 features
of these search sessions as defined in Table 1. It clusters
these 168 search sessions using EM algorithm [20] imple-
mented in Weka [8]. We first report our modeling and anal-
ysis of search session commonalities and differences.

Cluster1 Cluster2 Cluster3 Cluster4

NumItems

NumIDEBrowserSwitches

Duration

NumBrowserItems

NumWebCategories

NumKeywords

NumNewURLs

NumCategorySwitches

NumWebPageSwitches

BrowserDuration

NumIDEItems

IDEDuration

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

NUMIDEBROWSERSWITCHES

DURATION

NUMCATEGORYSWITCHES

NUMWEBPAGESWITCHES

BROWSERDURATION

IDEDURATION

NUMITEMS

NUMBROWSEITEMS

NUMWEBCATEGORIES

NUMKEYWORDS

NUMNEWURLS

NUMIDEITEMS

Figure 3: Heat map of the Feature Values of the 4
Search-Session Clusters

Fig. 3 shows the heat map of the normalized average feature
values of the 12 features across the four clusters. Larger
values were represented by darker colors, while smaller val-
ues were represented by brighter colors. Features in gray
background are application usage features, while those in
white background are content usage features. The heat map
of feature values reveals three distinct meta-clusters: short
(cluster1), medium (cluster2), and long (cluster3 and clus-
ter4).

The duration of short sessions is very short (less than 1
minute). In these short sessions, the developers mainly
used web browsers (6.02±5.86 BrowserItems, compared with
0.30±0.54 IDEItems). They spent on average 93% of to-
tal session time in the web browser, but very little time
in the IDE. There were a very small number of switch-
ings (0.56±0.99) between IDE and web browser. The de-
velopers opened a small number of new URLs (1.62±0.12),
and switched a small number of times between different we-
b pages (2.18±0.47) and between different web categories
(0.66±0.94).

The duration of long sessions ranges from 4.67 minutes to
104.16 minutes. In these long sessions, the participants fre-
quently used both the web browser and the IDE. There were
a large number of switchings (17.63±12.70 in Cluster3 and
30.21±35.46 in Cluster4) between IDE and web browser.
Compared with short sessions, the developers opened a large
number of new URLs (9.12±3.26 in Cluster3 and 7.26±5.92
in Cluster4), switched a large number of times between dif-
ferent web pages (18.13±4.26 in Cluster3 and 12.53±8.44 in
Cluster4) and between different web categories (9.44±2.56
in Cluster3 and 3.26±2.38 in Cluster4).

The statistics of feature values of the medium sessions fall
in between those of short sessions and long sessions.

An interesting observation is that search sessions of differ-
ent clusters differ mainly in application usage features. The
differences of content usage features (especially NumWeb-
Categories and NumKeywords) are smaller across search
sessions of different clusters.

Our results identify 4 types of search sessions: refine (clus-
ter1), medium select (cluster2), long select (cluster3), and
integrate (cluster4). Refine sessions are characterized by the
least diverse transitions between different types of items, and
the high probabilities to transit from the IDE or different
categories of web sites to search engine. The model shows

1374

0 20 40 60 80 100 120

D20
D19
D18
D17
D16
D15
D14
D13
D12
D11
D10

D9

D8
D7
D6
D5
D4
D3
D2
D1

Timeline(minutes)

D
e

v
e

lo
p

e
rs

 o
f

T
a

s
k
2

 D

e
v
e

lo
p

e
rs

 o
f

T
a

s
k
1

refine

medium select

long select

integrate

Figure 4: Timeline Plot of Search-Session Types

that the developers were highly likely to visit search engine
after visiting topic forms (TF) and technical tutorials (TT).
Select sessions are characterized by the most diverse transi-
tions between different types of items with similar transition
probabilities. That is, the developers explored many types
of online resources in Select sessions. Integrate sessions are
characterized by the transitions mainly between the IDE and
different categories of web content. That is, the developers
were likely to go back to the IDE after visiting certain online
resources in Integrate sessions.

Different types of search sessions reflect distinct online search
behaviors during software development. Refine sessions are
short. The developers refine search based on a quick explo-
ration of the search results of previous search, for example
when they find some hints in the search results or feel that
the previous search was unsuccessful. Select sessions are
medium or long. The developers explore, compare and se-
lect online resources to determine useful information in these
search sessions. This exploration and selection process are
very diverse and can be time-consuming. Integrate sessions
are long. The developers find useful online resources in these
sessions and integrate online resources in the IDE. The in-
tegration can take long time.

3.3 RQ2: Task Differences and Task× Session-
Type Interaction

This section reports our modeling and analysis of the effects
of tasks and search session types on the developers’ online
search behavior.

3.3.1 The Effect of Task Differences
Fig. 4 shows the timeline plot of the four types of search
sessions in the working process of the 20 developers. Differ-
ent colors represent different types of search sessions. Black
lines represent the ending of the search sessions.

Fig. 4 shows that the developers in the first task (D1-D8)
usually had less search sessions than the developers in the
second task (D9-D20). The first-task developers had only
refine, medium select and integrate sessions, but no long se-
lect sessions. The second-task developers had the search ses-
sions of all the four types. The two second-task developers
(D9 and D10) had Eclipse plugin development experience.
They were able to quickly find and integrate relevant online

Table 2: Test Results of Between-subjects Effects

SessionTypes Tasks Task SessionType

p 2

p
p 2

p
p 2

p

NUMITEMS .00 .51 .01 .04 .02 .05

NUMIDEBROWSERSWITCHES .00 .33 .00 .11 .00 .14
DURATION .00 .72 .00 .17 .00 .24

NUMBROWSERITEMS .00 .34 .01 .04 .02 .05

NUMWEBCATEGORIES .00 .33 .56 .01 .48 .00
NUMKEYWORDS .33 .02 .12 .02 .92 .00
NUMNEWURLS .00 .31 .11 .02 .03 .04

NUMCATEGORYSWITCHES .00 .41 .55 .01 .41 .01
NUMWEBPAGESWITCHES .00 .41 .04 .03 .10 .03

BROWSERDURATION .00 .41 .00 .05 .00 .06

NUMIDEITEMS .00 .55 .21 .01 .50 .00
IDEDURATION .00 .72 .00 .19 .00 .25

K

resources to complete the task in short time. Thus, their
task processes were different from the rest 10 second-task
developers.

The first-task developers usually started the task with sev-
eral refine and medium select sessions, followed by a long
integrate session till the end of the task. Only 3 out of the
8 first-task developers searched again (one or two refine or
medium select search sessions) after the integration session
started. In contrast, the second-task developers had much
more dynamic search sessions over time. They had much
more refine and select search sessions. About 17% of their
select sessions were long select sessions. These refine and s-
elect sessions were scattered throughout the task process.
The second-task developers usually had shorter integrate
sessions than the first-task developers. Three second-task
developers (D11, D18, D19) did not have integrate sessions.

We attributed these differences in the developers’ online
search behavior to the differences of the two development
tasks. The first task is to develop a new P2P chat software
using Java socket. The participants can easily find many
online code examples on Java socket programming or even
code examples implementing similar features as required by
the first task. Most participants can successfully modify on-
line code examples without much need for further search. In
contrast, the second task is to fix bugs in an Eclipse editor
plugin and extend the plugin with new features. The partic-
ipants in general lacked the knowledge of the Eclipse APIs
involved in the task. Unforunately, no single online resource
can cover all the involved APIs. Furthermore, due to the
unfamiliarity with these APIs, the developers often encoun-
tered unexpected issues while integrating online resources.
Thus, they had to keep searching and learning throughout
the task.

3.3.2 Task×SessionType Interaction
Table 2 summarizes the test results of between-subjects ef-
fects of the 2 (tasks) × 4 (search-session types) MANOVA
analysis on the 12 search-session features. p-values in bold
font indicates that the main effect of session types, the main
effect of tasks, and the interaction effect of tasks and search
session types are significant on the difference of the corre-
sponding features. η2

p values in red, blue and black font
indicate the large, small and trivial effect respectively.

The MANOVA test results show that the main effect of
search session types is significant for all the search session

1375

Session Types

integratelong
select

medium
select

refine

E
s
ti

m
a
te

d
 M

a
rg

in
a
l
M

e
a
n

s

60

40

20

0

Duration

Task2

Task1

Tasks

Session Types

integratelong
select

medium
select

refine

E
s
ti

m
a
te

d
 M

a
rg

in
a
l
M

e
a
n

s 20

15

10

5

0

BrowserDuration

Task2

Task1

Tasks

Session Types

integratelong
select

medium
select

refine

E
s
ti

m
a
te

d
 M

a
rg

in
a
l
M

e
a
n

s 50

40

30

20

10

0

IDEDuration

Task2

Task1

Tasks

Session Types

integratelong
select

medium
select

refine

E
s
ti

m
a
te

d
 M

a
rg

in
a
l
M

e
a
n

s 50

40

30

20

10

0

NumIDEBrowserSwitches

Task2

Task1

Tasks

Session Types

integratelong
select

medium
select

refine

E
s
ti

m
a
te

d
 M

a
rg

in
a
l
M

e
a
n

s 200

150

100

50

0

NumItems

Task2

Task1

Tasks

Session Types

integratelong
select

medium
select

refine

E
s
ti

m
a
te

d
 M

a
rg

in
a
l
M

e
a
n

s

120

100

80

60

40

20

0

NumBrowserItems

Task2

Task1

Tasks

Session Types

integratelong
select

medium
select

refine

E
s
ti

m
a
te

d
 M

a
rg

in
a
l
M

e
a
n

s 10

8

6

4

2

0

NumNewURLs

Task2

Task1

Tasks

Figure 5: Task×SessionType Interactions on Features

features except NumKeywords. This result is consistent
with the heat map visualization in Fig. 3. η2

p values indi-
cate that search session types have large effect on all the
search session features except NumKeywords. The main
effect of tasks is significant for 2 content usage features and
5 application usage features. Among these seven features,
tasks have large effect on three application usage features
(i.e., NumIDEBrowserSwitches, Duration, IDEDura-
tion), and have small effect on the other four features. The
interaction effect of tasks and search session types is signif-
icant for 3 content usage features and 4 application usage
features. Among these seven features, Task×SessionType
interactions have large effect on three application usage fea-
tures (NumIDEBrowserSwitches, Duration, IDEDura-
tion), and have small effect on the other four features.

Fig. 5 visualizes the interaction effect of tasks and search-
session types on the 7 features on which the Task×SessionType
interaction effect was significant. As Task1 did not have long
select session, there was no data point for Task1 at long se-
lect. We can see that the difference of the 7 features between
Task1 and Task2 was greatest in integrate sessions, while
the difference of the 7 features between Task1 and Task2
was very small in refine and medium select sessions. In in-
tegrate sessions, Task1 had larger values in three duration
features (Duration, BrowserDuration, and IDEDura-
tion), while Task2 had larger values in one application usage
feature (NumBrowserSwitches) and three content usage
features (NumItems, NumBrowserItems, NumURLs).

Our results show that search-session types have large and
significant effect on both application usage and content us-
age in search sessions, except for NumKeywords. Different
types of tasks affect the developers’ overall search process,
and affect mainly application usage at session level. Differ-
ent types of tasks has little impact on the search behavior
in refine and medium select sessions, but has big impact on
the search behavior in integrate sessions.

4. DISCUSSION
Our BPMiner approach uses video scraping tool to extract
HCI data from screen-captured videos. Alternatively, soft-
ware instrumentation can be used to log the developers’
interaction with the software tools they use and the ap-
plication content. Instrumenting many of today’s software

system is considerably complex. Compared with software
instrumentation, our BPMiner approach provides a gener-
ic, easy-to-deploy solution to collect time-series HCI data
for studying the developers’ behavior patterns and problem
solving strategies using screen-captured videos. The gen-
erality of the underlying data model of BPMiner allows it
to analyze time-series HCI data from a variety of software
development tasks. BPMiner can model the time-series H-
CI data using meta-model techniques such as Eclipse ECore
framework. Then, based on the task-specific requirements,
BPMiner could support the on-demand design of an analysis
process by interactively“mashing-up”available data analysis
and visualization methods.

Screen-captured videos have been widely used to collect ob-
servational data in studying human aspects of software en-
gineering, especially for modeling the developers ↪aŕ behav-
ior in software development tasks [16, 18] and eliciting de-
sign requirements for innovative software development tool-
s [12, 23]. However, studying micro-level behavior patterns
in software development tasks is time consuming, because
it often requires iterative open coding of screen-captured
videos [15]. Compared with these qualitative data collec-
tion and analysis methods, our BPMiner approach supports
micro-level, quantitative analysis of developers’ behaviors in
software development tasks. Our study shows that BPMiner
can help researchers discover latent behavior patterns in the
time-series HCI data. As such, BPMiner could provide new
insights into the outstanding difficulties in software develop-
ment tasks and the limitations of existing tool supports.

Understanding developers’ information behavior and needs
is crucial for improving existing software development prac-
tices. Our findings unveil that developers have to perform
many context switchings and explore information from var-
ious sources. However, in current practice, developers work
in the IDE but search online resources in the web browser.
This insight inspired the development of an in-IDE ambient
search agent [19]. The in-IDE search agent can unobtrusive-
ly monitor the developers’ programming activity in the IDE
and visualize their working focus over time. The developer
can use the working context to augment his search query
or refine the search results. The search agent can use the
working context to tweak the ranking of the search result-
s. It also uses the context to annotate the search results
and web pages to help the developer assess and browse the

1376

search results. This in-IDE search agent can enable deeper
integration of developers’ working and search context, and
thus smoother interleaving of coding and web search in soft-
ware development.

5. CONCLUSION AND FUTURE WORK
We have presented a novel approach BPMiner for extract-
ing, modeling, and analyzing developers’ behavior patterns
using screen-captured videos. Unlike instrumentation ap-
proach, BPMiner extracts time-series HCI data from screen-
captured videos using computer vision technique. BPMiner
supports exploratory sequential pattern analysis for the dis-
covery of developers’ behavior patterns. We implemented a
prototype of BPMiner, and conducted an evaluation of the
BPMiner prototype. In this evaluation, we used BPMiner
to analyze developers’ online search behavior during soft-
ware development. The empirical evaluation demonstrates
that BPMiner is a promising approach to mine developers’
behavior patterns from screen-captured task videos. As an
initial evaluation, our study was limited by its small dataset.
The proposed BPMiner approach needs to be further evalu-
ated for different software development tasks. We will also
improve the generality of our BPMiner approach with meta-
modeling techniques and “mash-up” support for on-demand
pattern discovery and analysis.

Acknowledgments
The authors thank the reviewers for their helpful comments.
This work is partially supported by MOE AcRF Tier 1 grant
M4011165.020 and MOE Scholarships.

6. REFERENCES
[1] L. Bao, J. Li, Z. Xing, X. Wang, and B. Zhou.

scvripper: video scraping tool for modeling developers’
behavior using interaction data. In Proc. ICSE,
volume 2, pages 673–676, 2015.

[2] D. M. Blei, A. Y. Ng, and M. I. Jordan. Latent
dirichlet allocation. the Journal of machine Learning
research, 3:993–1022, 2003.

[3] J. Brandt, P. J. Guo, J. Lewenstein, M. Dontcheva,
and S. R. Klemmer. Two studies of opportunistic
programming: interleaving web foraging, learning, and
writing code. In Proc. CHI, pages 1589–1598. ACM,
2009.

[4] E. Duala-Ekoko and M. P. Robillard. Asking and
answering questions about unfamiliar apis: An
exploratory study. In Proc. ICSE, pages 266–276,
2012.

[5] E. Gabrilovich and S. Markovitch. Computing
semantic relatedness using wikipedia-based explicit
semantic analysis. In IJCAI, volume 7, pages
1606–1611, 2007.

[6] J. F. Hair. Multivariate data analysis. 2009.

[7] J. Han, J. Pei, B. Mortazavi-Asl, Q. Chen, U. Dayal,
and M.-C. Hsu. Freespan: frequent pattern-projected
sequential pattern mining. In Proc. SIGKDD, pages
355–359, 2000.

[8] http://www.cs.waikato.ac.nz/ml/weka/.

[9] http://www.mathworks.com/products/matlab.

[10] http://www.r project.org/.

[11] J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J.
Pagulayan, and D. Wixon. Tracking real-time user
experience (true): a comprehensive instrumentation
solution for complex systems. In Proc. CHI, pages
443–452, 2008.

[12] A. J. Ko, H. H. Aung, and B. A. Myers. Design
requirements for more flexible structured editors from
a study of programmers’ text editing. In CHI, pages
1557–1560, 2005.

[13] A. J. Ko, H. H. Aung, and B. A. Myers. Eliciting
design requirements for maintenance-oriented ides: a
detailed study of corrective and perfective
maintenance tasks. In Proc. ICSE, pages 126–135,
2005.

[14] A. J. Ko, R. DeLine, and G. Venolia. Information
needs in collocated software development teams. In
Proc. ICSE, pages 344–353, 2007.

[15] A. J. Ko and B. A. Myers. A framework and
methodology for studying the causes of software errors
in programming systems. Journal of Visual Languages
& Computing, 16(1):41–84, 2005.

[16] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H.
Aung. An exploratory study of how developers seek,
relate, and collect relevant information during
software maintenance tasks. IEEE Trans. Softw. Eng,
32(12):971–987, 2006.

[17] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy,
K. Rector, and S. D. Fleming. How programmers
debug, revisited: An information foraging theory
perspective. IEEE Trans. Softw. Eng, 39(2):197–215,
2013.

[18] H. Li, Z. Xing, X. Peng, and W. Zhao. What help do
developers seek, when and how? In Proc. WCRE,
pages 142–151, 2013.

[19] H. Li, X. Zhao, Z. Xing, X. Peng, D. Gao, L. Bao, and
W. Zhao. amassist: In-ide ambient search of online
programming resources. In Proc. SANER, 2015.

[20] T. K. Moon. The expectation-maximization algorithm.
IEEE Signal processing magazine, 13(6):47–60, 1996.

[21] M. Nishimura. Speech recognition method, Sept. 17
1991. US Patent 5,050,215.

[22] D. Ramage, D. Hall, R. Nallapati, and C. D. Manning.
Labeled lda: A supervised topic model for credit
attribution in multi-labeled corpora. In Proc. of the
2009 Conference on Empirical Methods in Natural
Language Processing, pages 248–256, 2009.

[23] M. P. Robillard, W. Coelho, and G. C. Murphy. How
effective developers investigate source code: An
exploratory study. IEEE Trans. Softw. Eng,
30(12):889–903, 2004.

[24] M. W. Van Someren, Y. F. Barnard, J. A. Sandberg,
et al. The think aloud method: A practical guide to
modelling cognitive processes, volume 2. Academic
Press London, 1994.

[25] J. Wang, X. Peng, Z. Xing, and W. Zhao. An
exploratory study of feature location process: Distinct
phases, recurring patterns, and elementary actions. In
Proc. ICSM, pages 213–222, 2011.

1377

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: none
 Normalise (advanced option): 'original'

 32

 D:20120516081844
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 320
 None
 Up
 0.0000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: fix size 8.500 x 11.000 inches / 215.9 x 279.4 mm
 Shift: move left by 3.60 points
 Normalise (advanced option): 'original'

 32

 D:20150527105016
 792.0000
 US Letter
 Blank
 612.0000

 Tall
 1
 0
 No
 675
 322
 Fixed
 Left
 3.6000
 0.0000

 Both
 AllDoc

 PDDoc

 Uniform
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move up by 16.20 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 322
 Fixed
 Up
 16.2000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move left by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Left
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryItem_V1
 TrimAndShift

 Range: all pages
 Trim: none
 Shift: move down by 1.80 points
 Normalise (advanced option): 'original'

 32
 1
 0
 No
 675
 320
 Fixed
 Down
 1.8000
 0.0000

 Both
 AllDoc

 PDDoc

 None
 0.0000
 Top

 QITE_QuiteImposingPlus2
 Quite Imposing Plus 2.9
 Quite Imposing Plus 2
 1

 7
 6
 7

 1

 HistoryList_V1
 qi2base

