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Abstract—When discussing programming issues on social plat-
forms (e.g, Stack Overflow, Twitter), developers often mention
APIs in natural language texts. Extracting API mentions in
natural language texts is a prerequisite for effective indexing and
searching for API-related information in software engineering
social content. However, the informal nature of social discussions
creates two fundamental challenges for API extraction: common-
word polysemy and sentence-format variations. Common-word
polysemy refers to the ambiguity between the API sense of a
common word and the normal sense of the word (e.g., append,
apply and merge). Sentence-format variations refer to the lack
of consistent sentence writing format for inferring API mentions.
Existing API extraction techniques fall short to address these two
challenges, because they assume distinct API naming conventions
(e.g., camel case, underscore) or structured sentence format (e.g.,
code-like phrase, API annotation, or full API name). In this
paper, we propose a semi-supervised machine-learning approach
that exploits name synonyms and rich semantic context of API
mentions to extract API mentions in informal social text. The
key innovation of our approach is to exploit two complementary
unsupervised language models learned from the abundant un-
labeled text to model sentence-format variations and to train a
robust model with a small set of labeled data and an iterative
self-training process. The evaluation of 1,205 API mentions of
the three libraries (Pandas, Numpy, and Matplotlib) in Stack
Overflow texts shows that our approach significantly outperforms
existing API extraction techniques based on language-convention
and sentence-format heuristics and our earlier machine-learning
based method for named-entity recognition.

I. INTRODUCTION

APIs are an important resource for software engineering.

APIs appear not only in code, but also in natural language

texts, such as formal API specifications and tutorials, as well

as developers’ informal discussions, such as emails and online

Q&A posts. In this paper, we are concerned with extracting

API mentions from informal natural language texts such as

Stack Overflow discussions. For example, Fig. 1 shows a

sentence from a Stack Overflow post (post ID is 12182744).

In this sentence, we would like to extract the series and the

second apply as API mentions, which are a class name and a

method name of the Pandas Library, respectively. Extracting

such fine-grained API mentions is a prerequisite for indexing,

analyzing, and searching informal natural language discussions

for software engineering tasks, such as API linking [1], [2],

[3], [4], API recommendation [5], and bug fixing [6], [7].
Indeed, the importance of fine-grained API extraction from

natural language sentences has long been recognized. Repre-

sentative techniques include language-convention based reg-

“ I want to apply a function with arguments to series in python 
pandas. The documentation describes support for apply method, 
but it doesn't accept any arguments. ”

Common word API: the Series class  

API: the apply() method

Fig. 1: Illustrating Our Task

ular expressions [8], [1], [2] and island parsing [9], [3].

These techniques usually rely on observational orthographic

heuristics to distinguish APIs from normal words in a natural

language sentence: 1) distinct API naming conventions (e.g.,

words containing camelcases or special characters like ., ::,

or ()); 2) structured sentence format (e.g., code-like phrases

like “a=series.apply()” or API annotation). These heuristics

perform well for cases where orthographic features are preva-

lent and consistently used, e.g., extracting camelcased Java

APIs from official documentations [2]. However, they fall short

to address the following two fundamental challenges in API

extraction from informal natural language texts:

• Common-word polysemy: Many APIs’ simple name is

a single common word. For example, 55.04% of the

Pandas’s APIs have common-word simple name, such as

the Series class and the apply method. When such APIs

are mentioned with distinct orthographic features, such

as pandas.Series, apply(), and <code>apply</code>,

we can easily recognize them. Unfortunately, this is not

always the case due to the informal nature of the texts.

Then, such common-word APIs appear just as common

words in a sentence, as shown in Fig. 1. In fact, the

token apply (using a software-specific tokenizer [10],

[11]) appears 4,530 times in the discussions tagged

with pandas. Using our trained model, we estimate

that about 35.1% (1590/4530) of these apply tokens are

API mentions (labeling confidence score > 0.8). This

creates the challenge in disambiguating the API sense
of a common word from the normal sense of the word,

for example, the first apply (a common word) and the

second apply (an API mention) in Fig. 1. For API

extraction from developers’ informal discussions, e.g.,

emails, Bacchelli et al. [1] have shown that this challenge

poses a big threat to language-convention based regular

expressions, as no observational orthographic features

can be utilized. However, this common-word polysemy

challenge is generally avoided by considering only APIs

mentions with distinct orthographic features in existing
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TABLE I: A Subset of Variant Forms of API Mentions

Writing Form Freq. Remarks
pandas.DataFrame.apply() 3

Standard form
pandas.DataFrame.apply 10
.apply 624

Nonpolysemous derivations

apply() 177
.apply() 79
dataframe.apply 117
df.apply 215
df.apply() 20
apply 4,530 Polysemy

TABLE II: Sentences Mentioning the Same API Form

Post ID Sentence-context variations

15589354
I have finally decided to use apply which I understand
is more flexible.

29627130
if you run apply on a series the series is passed as a
np.array

25275009
It is being run on each row of a Pandas DataFrame via
the apply function

21390035
I am confused about this behavior of apply method of
groupby in pandas

18524166 You are looking for apply.

7580456
I tested with apply, it seems that when there are
many sub groups, it’s very slow.

work [3]. There has been no work from the software

engineering community addressing the polysemy problem

in fine-grained API extraction.

• Sentence-format variations: Informal discussions on so-

cial platforms (such as Stack Overflow, Twitter) are con-

tributed by millions of users with very diverse technical

and linguistic background. Such informal discussions are

full of misspellings, synonyms, inconsistent annotations,

etc. Consequently, the same API is often mentioned in

many different forms intentionally or accidentally. Table I

lists a subset of variant forms of potential mentions of the

apply method and their frequencies in the discussions

tagged with pandas. We can see that standard API

names are mentioned very few times. Instead, users

use non-standard synonyms (e.g., DataFrame written as

df ) and various non-polysemous derivational forms (e.g.,

.apply, df.apply) that can be partially matched to the

full name or the full name synonym. In addition, the

polysemous common-word apply is used 4,530 times.

Even for the same API form, the surrounding sentence

context of an API mention also varies greatly. As shown

in Table II, there lacks of consistent use of verb, noun and

preposition in the discussions. All these API-mention and

sentence-context variations make it extremely challenging

to develop a complete set of regular expressions or island
grammars for inferring API mentions.

To handle common-word polysemy and API-mention vari-

ations, we propose to exploit the sentence context in which

an API is mentioned to recognize API mentions in informal

natural language sentences. The rationale is that no matter

what an API’s name is or in what form an API is mentioned,

the sentence context of an API mention can help distinguish

an API from non-API words. However, as shown in Table II,

to make effective use of sentence context, we must model

sentence-context variations in informal social discussions.

Unfortunately, it is impractical to develop a complete set of

sentence context rules or to label a huge amount of data to train

a machine learning model, not only due to prohibitive effort

needed but also out-of-vocabulary issue [12], [13] in informal

text (i.e., variations that have not been seen in the training data

even when a huge amount of data has been examined).

In this paper, we propose a semi-supervised machine learn-

ing approach to solve the problem. To model API-mention and

sentence-context variations, our approach exploits state-of-the-

art unsupervised language models, in particular class-based

Brown Clustering [14], [15] and neural-network-based word

embedding [16], [17] to learn word clusters of semantically

similar words from the abundant unlabeled text. Empowered

by the compound word-cluster features from unsupervised

language models fed into a linear-chain Condition Random

Field (CRF) model [18], together with an iterative self-training

mechanism (a.k.a. bootstrapping) [19], our approach requires

only a small set of human labeled sentences to train a

robust model for extracting API mentions in informal natural

language sentences.

To evaluate our approach, we choose to extract APIs for

three Python libraries, i.e., Pandas, Numpy and Matplotlib,

because these libraries define many common-word APIs, mak-

ing their informal mentions ambiguous with the normal sense

of the common words. Meanwhile, these three libraries are

popular Python libraries for very different functionalities and

have been widely discussed on Stack Overflow. We compare

our approach with three state-of-the-art methods for API

extraction from natural language text, including lightweight

regular expressions [1], island parsing [3], and machine-

learning based software-specific entity recognition [11]. Our

approach consistently and significantly outperforms the three

baseline methods.

II. RELATED WORK

Many software engineering tasks require or benefit from

fine-grained API extraction techniques, such as API linking

(a.k.a traceability recovery) [20], [21], [22], [8], [1], [2], [3],

[4], API recommendation [5], [23] and bug fixing [6], [7]. In

this section, we discuss the state-of-the-art methods for fine-

grained API extraction from natural language texts.

Bacchelli et al. [1], [8] develop an API extraction and link-

ing infrastructure, called Miler. They use lightweight regular

expressions of distinct orthographic features and information

retrieval techniques to detect class and method mentions in

developer emails. They show that information retrieval tech-

niques do not work for fine-grained API extraction task, whose

performance is even significantly worse than lightweight regu-

lar expressions. Furthermore, their study shows that common-

word polysemy and non-standard API synonyms significantly

degrade the performance of lightweight regular expressions.

Dagenais and Robillard [2] develop RecoDoc to extract Java

APIs from several learning resources (formal API documen-

tation, tutorial, forum posts, code snippets) and then perform

traceability link recovery across different sources. They devise
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a pipeline of filters to resolve the traceability link ambiguities.

However, they extract API mentions from natural language text

using regular expressions similar to those of Miler [1]. That

is, their API extraction from natural language text again relies

on distinct orthographic features of APIs.

Island parsing is another popular technique for extracting

information of interest from texts. By defining island gram-

mars, the textual content is separated into constructs of interest

(island) and the remainder (water) [24]. Bacchelli et al. [9]

extract coarse-grained structured code fragments from natural

language text with island parsing. Rigby and Robillard [3]

also use island parser to identify code-like elements that can

potentially be APIs. They further resolve the code-like phrases

to fine-grained APIs. However, simple names of methods that

are not suffixed by () are simply ignored [3]. For example,

they consider only HttpClient.execute and execute() as API

mentions, but ignore the single word execute which also likely

refers to the same API.

Our work is related to two lines of work in natural language

processing, named entity recognition (NER) whose goal is to

extract and categorize entities (e.g., location, people) in natural

language text [13], [12], [25], and word sense disambiguation

(WSD) whose goal is to disambiguate the sense of polysemous

words in a given sentence context [26], [27], [28]. Recently,

Ye et al. [11] propose a machine learning based approach,

called S-NER, to recognize general software-specific entities,

including APIs, in software engineering social content. S-

NER’s F1-score for API recognition is much lower than that

of other types of software entities, such as programming

languages and software standards. Using S-NER for the task of

API extraction has several limitations: 1) it aims to recognize

a broad category of software entities, making it difficult to

build a gazetteer with good coverage of APIs. 2) S-NER uses

only basic context features, i.e., the word itself, word shape

and word type of the surrounding words, and thus has limited

toleration to context variations.

III. APPROACH OVERVIEW

In this section, we formulate our research problem of API

extraction from informal natural language text, and give an

overview of our proposed approach.

A. Problem Formulation

Given a natural language sentence (e.g., from Stack Over-

flow posts), our task is to recognize all API mentions in the

sentence, as illustrated in the example in Fig. 1. Specially, we

want to extract tokens in a natural language sentence that refer

to public modules, classes, methods or functions of certain

libraries as API mentions. An API mention should be a single

token rather than a span of tokens when the given sentence

is tokenized properly, preserving the integrity of code-like

tokens. API mentions can be of the following forms:

• Standard API full name: The formal full name of

an API from the official API website, e.g., pan-
das.DataFrame.apply or pandas.DataFrame.apply() of

the Pandas library;

• Non-standard synonym: Variants of standard API name

that are composed of commonly-seen library or class

name synonyms, e.g., pd.merge, pandas.df.apply, or

pd.df.apply in which pandas is written as pd and

DataFrame is written as df ;

• Non-polysemous derivational form: API mentions that

can be partially case-insensitive matched to a standard

API name or its non-standard synonym, for example,

dataframe.apply, df.apply, .apply, or apply();
• Polysemous common-word: common-words that refer to

the simple name of an API, such as Series (class) and

apply (method) of the Pandas library, Figure (class) and

draw (method) of Matplotlib, and Polynomial (class) and

flatten (method) of Numpy.

Note that in this work we focus on tackling common-word

polysemy and sentence-format variations issues in recognizing

whether a token is an API mention of certain libraries. A re-

lated research problem is to link the recognized API mentions

to the corresponding API of a specific library, which is referred

to as API linking [2], [3], [4]. The task of API linking is

beyond the scope of this paper.

B. Overview of Main Steps

Fig. 2 shows the main steps of our approach. In this study,

we obtain natural language sentences from Stack Overflow

discussions1 to train and evaluate our approach (Section IV-A).

In our approach, we use two unsupervised language models

(i.e., class-based Brown clustering [14] and neural-network

based word embedding [17], [16]) to learn word represen-

tations from unlabeled text and cluster semantically similar

words (Section IV-D). We exploit word representations and

clusters in three perspectives. First, we observe word clusters

that contain standard API names to infer commonly used

library or class name synonyms, for example, pd for pandas,

df for DataFrame. A collection of standard API names and the

inferred common API synonyms constitute an API inventory

for a specific library (Section IV-B). Second, unsupervised

word representations are used to represent semantically equiv-

alent API-mention variations and sentence-context variations,

which help address the out-of-vocabulary issue (Section IV-D).

Third, unsupervised word clusters, together with self-training

process (Section IV-E), help alleviate the lack of labeled data

for modeling training.

Our approach trains a linear-chain Conditional Random

Field (CRF) model using orthographic features from tokens,

compound word-representation features from the two different

unsupervised language models, and gazetteer feature from the

API inventory (Section IV-F). The training starts with a small

set of human labeled sentences to obtain an initial CRF model.

Then, the training continues through an iterative self-training

process over a large set of unlabeled sentences (Section IV-E),

through which high-confidence machine labeled sentences,

together with human labeled sentences, are used to retrain the

CRF model.

1All the data used is from Stack Overflow January 2016 data dump.
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Fig. 2: The Overview of Our Approach

IV. APPROACH DETAILS

We now describe each component of our approach in detail.

A. Text Preprocessing

Given a Stack Overflow post, the preprocessing steps in-

clude code snippet removal, HTML tags cleaning, and tok-

enization, which is similar to [29]. We remove large code

snippets in <pre><code>, but not short code elements in

<code> in natural language sentences. We write a sentence

parser to split the post text into sentences. We use our

software-specific tokenzier [10] to tokenize the sentences.

This tokenizer preserves the integrity of code-like tokens. For

example, it treats pandas.DataFrame.apply() as a single token,

instead of a sequence of 7 tokens, i.e., pandas . DataFrame .
apply ( ). For other text (e.g., email), different preprocessing

steps, sentence parser, and tokenizer may be needed.

B. Constructing API Inventory

A gazetteer of known entities is often compiled for NER

and WSD tasks. Partial name match of gazetteer entities is

commonly used as an important feature for the CRF training,

which has been shown to improve the performance of the

trained model. However, our previous work on software-

specific NER [11] shows that a gazetteer of standard API

names contributes only marginally to the NER performance.

This is partially because of the wide presence of non-standard

API synonyms and their derivational forms in informal natural

language text (see Table I for examples). Therefore, we

construct an API inventory for a library that contains not only

standard API names but also their commonly-seen synonyms.

Given a library, we first crawl a list of standard API

names from the library’s official website. For example, for

the Pandas library, the list of standard API names includes

pandas.DataFrame, pandas.DataFrame.apply, etc. Following

the treatment of prior NER [13], [12] and WSD [27], [26]

work, we remove extremely common English words from the

inventory, such as data, all, because most of mentions of these

extremely common English words are not API mentions.

Then, we examine the Brown clusters (see Section IV-D)

that contain the standard API names and their derivational

forms, from which we can easily observe tokens that are

semantically similar to the standard API names and their

derivational forms, but written in different synonym forms. We

infer commonly-seen synonyms of API mentions from these

tokens, e.g., pandas written as pd, DataFrame written as df.
In our study, we observe that synonyms of library and

class/module names are common, while we rarely see syn-

onyms of method/function names (except for some mis-

spellings). Therefore, we infer synonyms of standard API

names using a simple combination of the observed li-

brary/class/module name synonyms. As our goal is not to

compile a complete list of API synonyms, the analysis of

commonly-seen synonyms does not require much effort. Ac-

cording to our experience, constructing the API inventory for

a library requires only 2-3 hours, if the developer is familiar

with web scraping and Brown clustering techniques.

The API inventory serves two purposes: 1) partial match of

API names or synonyms in the inventory is used as a feature

for the CRF (see Section IV-F); 2) ensure that training data

and test data reaches a good coverage of polysemous and

derivational forms of library APIs (see Section IV-C).

C. Training Sentences Selection and Labeling

The quality and amount of human labeled data for model

training are essential to the performance of a machine learning

system. However, there has been no dedicated efforts for label-

ing APIs in natural language sentences for tackling common-

word polysemy issue in the task of API extraction. To train an

effective machine learning model for disambiguating the API

sense and the normal sense of common words, the labeled data

must contain not only API mentions with distinct orthographic

features but also sufficient polysemous common-word API

mentions. Similar treatment has been adopted in word sense

disambiguation research [28], [26].

In our work, we select training sentences that mention APIs

of a particular library (e.g., Pandas in our evaluation), based on

the API inventory of the library. However, the trained machine

learning model is not limited to extracting API mentions of this

particular library. Instead, it can robustly extract API mentions

of very different libraries (e.g., Numpy, Matplotlib).

Inspired by the ambiguous location name extraction

work [12] and the mobile phone name extraction work [30],

we propose to generate training data with minimal human

labeling effort as follows. We manually split the APIs in
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the API inventory into two subsets based on whether an

API’s simple name has distinct orthographic features and

whether the simple API name can be found in a general

English dictionary. The simple name of an API in the non-
polysemous set must have unambiguous orthographic features,

for example, camel case MultiIndex, underscore read csv, or

must not be found in a general English dictionary, for example,

swaplevel, searchsorted. In contrast, the simple name of an

API in the polysemous set does not have distinct orthographic

features and the simple name is a general English word, for

example, series, apply and merge. Although the qualified name

of an API always has distinct orthographic features, such as

pandas.series, apply(), the simple name can be polysemous.

We select Stack Overflow sentences for labeling as follows.

First, we randomly select 300 sentences from the posts that are

tagged with the particular library. Each of these 300 sentences

must contain tokens that exactly match the standard name of

at least one API in the non-polysemous set, but must not

contain tokens that match the simple name of the APIs in the

polysemous set. Different sentences may mention the same

APIs in the non-polysemous set. For these 300 sentences, we

do not need to manually label the sentences. Those tokens that

exactly match the standard name of the non-polysemous APIs

can be automatically labeled as API mentions. Second, we

randomly select sentences that contain tokens that match the

simple name of at least one API in the polysemous set. These

sentences contain tokens that can be API mentions but can

also be common words. Therefore, we must manually examine

the selected sentences and label API mentions (if any) in the

sentences. The selecting and labeling continues until we collect

sentences that contain at least 200 mentions of the APIs in the

polysemous set.

The selected sentences constitute the set of human labeled

data for model training. This initial set of training data will

be expanded using self-training, as discussed in Section IV-E.

D. Learning Word Representations

In informal social discussions, both API mentions and

sentence context vary greatly (see Table I and Table II). These

variations result in out-of-vocabulary issue [12] for a machine

learning model, i.e., variations that have not been seen in the

training data. As we want only minimal effort to label training

data, it is impractical to address the issue by manually labeling

a huge amount of data. However, without the knowledge about

variations of semantically similar words, the trained model

will be very restricted to the examples that it sees in the

training data. To address this dilemma, we propose to exploit

unsupervised language models to learn word clusters from a

large amount of unlabeled text. The resulting word clusters

capture different but semantically similar words, based on

which a common word representation can be produced to

represent the words in a cluster. Word representations are then

used as features to inform the model with variations that have

not been seen in the training data.

The unsupervised language models used in this paper in-

clude class-based Brown clustering [14], [15] and neural-

network based word embedding [16]. Different language mod-

els make different assumptions about corpus properties to

evaluate the semantic similarity between words. Empirical

studies [31] and [32] show that Brown clustering and word

embedding produce complementary views of the semantic

similarity of words, and when combined together as compound

features, they can significantly improve the performance of

entity recognition techniques. Considering the informal and

diverse nature of our text, we decide to use both Brown

clustering and word embedding to learn word representations.

Assume users are interested in extracting API mentions

of a particular library (e.g., Pandas or Numpy). To learn

unsupervised language models, we collect a large set of Stack

Overflow posts that are tagged with the library, excluding

those containing sentences selected as training data. The posts

are preprocessed and split into sentences as described in

Section IV-A. This produces a large set of unlabeled sentences.

Unlike prior work [31], [32], [11], [12], [30], we do not convert

words into lowercase. This is because many APIs have initial-

capitalized name, e.g., the Series class of the Pandas library.

We want language models to treat them as different words

from their lowercase counterparts.

Given this set of unlabeled sentences, Brown Clustering [14]

outputs a collection of word clusters. Each word belongs

to one cluster. Words in the same cluster share the same

bitstring representation. Studies [30], [11], [12] show that

Brown clusters are useful for identifying abbreviations and

synonyms. Indeed, we exploit Brown clusters learned from

unlabeled text to expand standard API names with commonly-

seen name synonyms (see Section IV-B).

For neural-network based word embedding, we use continu-

ous skip-gram model [16], [33] to learn a vector representation

(i.e., word embedding) for each word. Word embeddings have

been shown to capture rich semantic and syntactic regularities

of words [16], [17]. However, studies [31], [34], [32] show that

it is inefficient to directly use the low-dimensional continuous

word embeddings as features to a linear-chain CRF model

for entity recognition, because the linear CRF theoretically

performs well in high-dimensional discrete feature space.

Therefore, following the treatment of prior work [31], [32], we

transform the word embeddings to a high-dimensional discrete

representations leveraging the K-means clustering. Concretely,

each word is treated as a single sample, and each K-means

cluster is represented as the mean vector of the embeddings of

words assigned to it. Similarities between words and clusters

are measured by Euclidean distance. Similar to [31], we set

K to a set of values (e.g., 500, 1000, 1500, 2000, 2500) to

obtain a set of K-means clusters. After K-means clustering,

each word is represented as the ID of the cluster in which

the word belongs to, i.e., a one-shot K-dimensional vector in

which the ith dimension is set to 1 if the word belongs to the

ith cluster and all other dimension is set to 0.

Word representations obtained from the Brown clusters and

the word embedding clusters are used as features to the CRF

model (see Section IV-F). This helps the CRF model tolerate

semantically similar API-mention and sentence-context varia-
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tions, and thus alleviate the out-of-vocabulary issue.

E. Iterative Self-Training Process

The quality of a machine learning model relies on the

sufficient, high-quality training data. In this work, we only

manually label a small set of training data (see Section IV-C).

Although using unsupervised word representations alleviates

the out-of-vocabulary issue, to further alleviate the lack of

training data, we propose to use an iterative self-training mech-

anism [19], through which high-confidence machine labeled

sentences will be added to the training dataset to retrain the

model incrementally. This self-training process will expose the

model to much more sentence variations that have not been

covered by human labeled data.

Algorithm 1 outlines the self-training process. The algo-

rithm first trains a CRF classifier using the small set of human

labeled data obtained in Section IV-C (lines 1-2). The details

of the CRF classifier are explained in Section IV-F. Then,

for each unlabeled sentence S, the algorithm uses the current

CRF classifier to label the sentence and obtains a machine

labeled sentence Slabeled and the confidence conf of the

labeling result (lines 4-5). If the labeling confidence is above

the user-specified threshold α, the machine labeled sentence

is added to the set of labeled training sentences (lines 6-9).

Once more than N machine labeled sentences are added, the

algorithm retrains the CRF classifier with the larger set of

labeled sentences (including both human labeled and machine

labeled) (lines 10-14). The new CRF classifier will be used to

label the rest of the unlabeled sentences. The process continues

until all unlabeled sentences are processed or the maximum

number iterations has been executed.

Algorithm 1: Self-training the CRF-based Classifier

Data: A stream of unlabeled sentences unlabelsents;
A set of labeled training sentences te;

Result: The CRF classifier l
1 te ← human labeled sentences;
2 l = train(te);
3 for S ∈ unlabeledsents && iterations < M do
4 �S = feature extractor(S);

5 (Slabeled, conf) = crf label(l, �S);
6 if conf > α then
7 te ← te ∪ {Slabeled};
8 n = n + 1;
9 end

10 if n > N then
11 l = train(te);
12 iterations + +;
13 n = 0;
14 end
15 end

F. CRF-based Classifier

Given a token in a natural language sentence, our approach

determines whether the token is an API mention or a normal

word using a linear-chain Conditional Random Fields (CRF)

[18]. The CRF classifier is the state-of-the-art model for

sequential labeling, which is particularly strong at learning

from contextual features. In our work, the CRF classifier is

trained using a small set of human labeled sentences and a

large set of machine labeled sentences obtained through self-

training. After training, the classifier can be used to label

the tokens of unlabeled sentences as API mentions or normal

words.

In this work, we design three kinds of features for the

CRF classifier: orthographic features of current tokens and

its surrounding tokens, word-representation features of current

token (word) and its surrounding tokens, and gazetteer features
based on the API inventory. To illustrate our feature design,

we use the following notations: wi denotes the current token.

wi+k denotes the next kth token to the current token, e.g.,

wi+1 is the next token to the current token. wi−k denotes the

previous kth token to the current token.

Orthographic features. This set of features include: 1)

exact token, including the current token wi, the surrounding

tokens of the current token in the context window [-2, 2], the

bigrams wi+kwi+k+1 (−2 ≤ k ≤ 1) in the context window

[-2, 2], i.e., wi−2wi−1, wi−1wi, wiwi+1, wi+1wi+2; 2) word
shape of the current token wi and its surrounding tokens in the

context window [-2, 2], including whether the token contains

dot(s) and/or underscore, and whether the token is suffixed

with a pair of round brackets; 3) word type of the current

token wi and its surrounding tokens in the context window

[-2, 2], including type indicates if the token is all-capitalized

or first-letter-capitalized, if it is made of all-symbol, all-letter,

all-digit, a mixture of symbol and letter, etc.

Word-representation features. For K-means clusters of

word embeddings, each word in the corpus is assigned to a

cluster ID. We denote the cluster ID of the current word as

ci. Following the pioneer work of utilizing compound cluster

features [31], [32], our word-embedding-cluster features are:

1) the cluster ID of the current word and its surrounding words

in the context window [-2, 2]; 2) the bigrams of the cluster

ID of the words within the context window, i.e., ci+kci+k+1

(−2 ≤ k ≤ 1); 3) the bigram of the cluster ID of the

previous word and the next word, i.e., ci−1ci+1. For Brown

clustering, each word is represented as a bitstring. Our Brown-

cluster features are: 1) the bitstring of the current word and

its surrounding words in the context window [-2, 2]; 2) the

prefixes of the bitstring of the current word and its surrounding

words in [-2, 2]. The prefix lengths we use in this work are

{2, 4, 6, 8, ..., 14}.
Gazetteer features. We use the API inventory as the

gazetteer. Each standard API name or name synonym is an en-

try of the gazetteer. We perform string matching to the entries

of the gazetteer, and use the matching result as our gazetteer

feature. In particular, given a token w, we first remove the

“()” if w is suffixed with “()”. The resulting word, denoted

as w nb, is then matched to the gazetteer using the following

criteria: 1) if w nb contains no dot or w nb ends with a dot,

we perform exact matching to the gazetteer entries; 2) if w nb
is prefixed with a dot, we consider it as a match if any of the

entries ends with w nb; 3) if w nb contains dot in the middle,

we consider it as a match if any of the entries begins with

w nb or partially match to .w nb. (i.e., with a prefix dot and

a suffix dot). We have the third rule because, if users write
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“e.g”, a simple partial string matching will match the token to

the API name like “pandas.core.groupby.GroupBy.transform”,

which is not desired.

V. EXPERIMENT SETUP

This section describes the tools we use to implement our

approach, studied libraries, model training settings, testing

dataset labeling, evaluation metrics, and the baseline methods

we compare with.

A. Tool Implementation

We implement web crawlers using Scrapy [35] to crawl

official API names. For the implementation of the linear

CRF, we use CRFsuite [36], a popular CRF toolkit for

sequential labeling. For Brown Clustering, we use Liang’s

implementation [37]. We learn continuous word embeddings

using word2vec [38], which contains an efficient open-source

implementation of the skip-gram model [16]. We use the K-

means implementation from Sofia-ML [39] to perform K-

means clustering of the continuous word embeddings.

B. Studied libraries

The key challenge we aim to address is to disambiguate

the API sense of a common word and the normal sense

of the word in a natural language sentence. To evaluate

whether our approach achieves this objective, we need to

choose libraries that often use common words as API names.

To this end, we choose three Python libraries, i.e., Pandas,

Numpy, and Matplotlib. Table III summarizes the information

of the three libraries, including the number of Stack Overflow

questions that are tagged with the corresponding library tag.

We construct the API inventory for the three libraries as

described in Section IV-B. APIs in the inventory are then

split into a non-polysemous set and a polysemous set (see

Section IV-C). Pandas, Numpy and Matplotlib have 55.04%,

16.04% and 41.36% APIs whose simple name is polysemous

common word, respectively.

Another important reason we choose these three libraries is

that the APIs of the three libraries are for diverse function-

alities: Pandas is for panel data manipulation and analysis,

Numpy for scientific computing, Matplotlib for 2D plotting.

Semantically, Matplotlib is more distant from Pandas than

Numpy. Using these three libraries helps demonstrate the

generality of our approach.

C. Model Training

Human labeled sentences for model training are from

Pandas posts only. The sentence selection and labeling

process is described in Section IV-C. The labeling results are

cross-checked by the first and third author to reach agreements

on the labels. Unlabeled sentences used to learn Brown clusters

and word embeddings include all the sentences from Stack

Overflow posts that are tagged with pandas, numpy and

matplotlib, except those sentences selected as training and

test sentences. For Brown clustering, we ignore the words

that appear fewer than 3 times in the unlabeled sentences,

and the number of Brown clusters is set to 500. For word-

embedding clusters using K-means, we follow the settings of

[31], i.e., we set K to 500, 1000, 1500, 2000, 2500 to get 5

clustering results. These 5 word-embedding clusters and the

Brown clusters are used as word-representation features to the

CRF (Section IV-F).

For the self-training process, we randomly select unlabeled

sentences from the pandas discussions using the API in-

ventory of the Pandas library, and feed these sentences as a

stream of unlabeled sentences to Algorithm 1. We iterate the

self-training 10 times (i.e., M = 10). We follow the empirical

parameter settings of prior work [26], [25], [13]. The threshold

of confidence score for adding a machine labeled sentence

into the training set is 0.8, i.e., α at line 6 of Algorithm

1. With this high threshold, machine labeled sentences will

not introduce much noise to the model. Meanwhile, it is not

too strict so that the self-training can expand the model with

unseen examples that are different from the training examples

that are already in the training set. We set N to 500, i.e., once

500 high-confidence machine labeled sentences are added into

the training set, we re-train the model.

D. Human Labeling of Testing Data

For each studied library, we randomly select and label

natural language sentences from the Stack Overflow posts and

comments that are tagged with the corresponding library tag.

We stop labeling until we obtain at least 150 sentences, each of

which must contain at least one mention of an API in the API

inventory of the library. The mention can be standard name,

non-standard synonym, or non-polysemous derivational form

of the API. Meanwhile, our testing data must also contain at

least 150 sentences, each of which must contain at least one

mention of a polysemous API by its simple name. The labeling

results are cross-checked by the first and third author to reach

agreement on the labels.

At the end, our testing dataset has 3,389 sentences con-

taining 65,857 tokens. Among these 3,389 sentences, 903

sentences (26.6%) contain at least one API mention. Table IV

summarizes the statistics of different forms of API mentions.

In total, the testing data contains 1,205 API mentions for the

three libraries, which refer to 33.9%, 36.1% and 30% of the

APIs of the respective library. Among the 1,205 total API

mentions, 44% of API mentions (531 times) in our testing

data are polysemous common-word mentions.

It is important to note that our training sentences contain

only mentions of Pandas’s APIs, while our test sentences

contain mentions of APIs of not only Pandas but also Numpy
and Matplotlib. To avoid model overfitting, out test data does

not contain Pandas’s APIs mentioned in the training data.

Furthermore, the mentions of Numpy’s and Matplotlib’s APIs

are completely new to the CRF model trained using mentions

of Pandas’s APIs.

E. Evaluation metrics

We use precision, recall, and F1-score to evaluate the

performance of an API extraction method. Precision measures
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TABLE III: Information of the Studied Libraries

Library Version #SO Questions Attribute #APIs #Polysemous API Percentage

Pandas 0.18.0 22,226 Panel data analysis 774 426 55.04%
Matplotlib 1.5.1 16,480 2D plotting 3877 622 16.04%
Numpy 1.11.0 24,390 Scientific computing 2217 917 41.36%

TABLE IV: Statistics of API Mentions in Testing Dataset

Library
#API Mentions

standard/deriv1 synonym/deriv polysemy Total

Pandas 167 59 182 408
Matplotlib 184 62 189 435
Numpy 88 114 160 362

Total 439 235 531 1,205
1deriv = derivational form

what percentage the recognized APIs by a method are correct.

Recall measures what percentage the API mentions in the

testing dataset are recognized correctly by a method. F1-score

is the harmonic mean of precision and recall.

F. Baseline Methods for API Extraction

We compare our approach with three state-of-the-art meth-

ods for fine-grained API extraction from natural language text.

• Baseline1 - Lightweight regular expressions. We im-

plement the lightweight regular expressions used in Miler

[1]. Specifically, Miler supports dictionary look-up com-

bined with lightweight regular expressions to extract APIs

from emails. Regular expressions are defined based on

language convention and one punctuation rule. Same as

Miler, we perform dictionary look-up in our API inven-

tory and devise lightweight regular expressions based on

Python’s language conventions (e.g., check the existence

of dot and underscore). We use the same punctuation

checking rule as Miler, which checks if a token is

surrounded by punctuations (please refer to Subsection

“Punctuation” in Section 4 of Miler [1] for details).

• Baseline2 - Island parsing. We implement island parsing

following the descriptions in Section 4 of [3], except that

their parser is based on Java language specification, while

ours is based on Python language convention. Note that

in [3] authors examine the validity of the extracted APIs

using API linking techniques from RecoDoc [2], while

such API linking techniques are not used in this baseline,

as API linking is out of the scope of this paper. Our island

parser also exploits code annotation practice on Stack

Overflow, i.e., annotate small code fragment in text using

HTML tag <code>. Our island parsing considers a single

token that is annotated with <code> as an “island”, i.e.,

an API mention.

• Baseline3 - Machine-learning based NER. We use the

software-specific entity recognition tool (S-NER) pro-

posed in our earlier work [11] to recognize the API

mentions in our testing data. For fair comparison, we

use the same set of features used in [11], and re-train

the model of S-NER with the same set of human labeled

sentences for training the CRF model of this work.

VI. EXPERIMENT RESULTS AND ANALYSIS

We now report experiment results and analyze our findings.

A. Overall Results for All API Mentions

Table V shows the comparison of the three evaluation

metrics for using the three baseline methods and our method

to extract all API mentions in the testing dataset. Our method

outperforms all the baseline methods. It achieves the best and

balanced precision and recall, and the F1-score is 0.876.

TABLE V: Comparison of Overall Performance

Method Precision Recall F1-score

Baseline1 0.125 0.723 0.213
Baseline2 0.633 0.624 0.628
Baseline3 0.825 0.678 0.744

Our method 0.879 0.872 0.876

Comparison with Baseline1: we observe almost the same

performance result as that of Miler [1] for extracting API

mentions of the C library Augeas. Miler’s performance for ex-

tracting mentions of the Augeas’s APIs from developer emails:

precision 0.15, recall 0.64 and F1-score 0.24. In our experi-

ment, the Baseline1 (i.e., dictionary look-up and lightweight

regular expressions) achieves precision 0.125, recall 0.723 and

F1-score 0.213. This is because both the C library Augeas and

the three Python libraries used in this experiment define many

common-word APIs, which creates common-word polysemy

issue once mentioned by their simple name in the text. Miler’s

approach resolves the issue by aggressively labeling common-

word tokens as APIs, and thus achieves very low precision but

good recall. If a conservative strategy were adopted, the result

would go the opposite, i.e., improved precision but degraded

recall. Overall, the Baseline1 methods cannot properly address

common-word polysemy issue.

Comparison with Baseline2: The Baseline2, i.e., a carefully

designed island parser that exploits language conventions and

sentence structures (e.g., code annotation), proves to be more

useful and reliable for API extraction from informal text. The

island parsing baseline achieves balanced precision and recall,

and the F1-score is 3 times higher than that of the Baseline1.

However, it still misses about 38% of the API mentions and

about 37% of the extracted API mentions are not true API

mentions. Island parsing especially falls short to extract API

mentions when users forget to annotate the API mentions, such

as the mention of the series class and the apply mention in

Fig. 1, which is common in Stack Overflow discussions.

Comparison with Baseline3: The Baseline3, i.e., machine-

learning based software-specific named entity recognition,
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TABLE VI: API Extraction Performance for Each of the 3 Studied Libraries

Method
Pandas Matplotlib Numpy

Precision Recall F1-score Precision Recall F1-score Precision Recall F1-score

Baseline1 0.153 0.791 0.257 0.107 0.689 0.180 0.111 0.675 0.191
Baseline2 0.640 0.615 0.627 0.611 0.622 0.617 0.617 0.645 0.631
Baseline3 0.858 0.791 0.823 0.779 0.527 0.629 0.795 0.705 0.747

Our Method 0.913 0.889 0.901 0.856 0.879 0.867 0.847 0.873 0.860

achieves significantly higher precision and a moderate im-

provement on recall, compared with the Baseline2. Our

method can improve the precision even further, and meanwhile

significantly improve the recall. Our method’s improvement

on recall over Baseline3 can be attributed to the use of

unsupervised word representations as compound semantic

context features. In contrast, the Baseline3 uses only simple

orthographic context features, and thus its model puts more

weight on the orthographic features and word representations

of the current word, and less on context features. As a result,

the Baseline3’s improvement on recall over the island parsing

is moderate. Other new features introduced in our method,

such as commonly-seen synonyms in API inventory, self-

training, and two complementary word representations, also

contribute to boosting up precision and recall, compared with

our previous machine-learning based method [11].

B. Results for Each of the Studied Libraries

Table VI shows the comparison of the API extraction

performance of different methods for the three studied li-

braries, respectively. Similar observations can be made as the

comparison of the overall performance.

An interesting observation is the performance improvement

of the Baseline3 and our method (i.e., two different machine-

learning based methods) across libraries. The Baseline3 per-

forms the best on extracting mentions of Pandas’s APIs

(F1-score 0.823), but the performance drops significantly for

Numpy’s and Matplotlib’s APIs (F1-score 749 and 0.629

respectively). Similarly, our method also performs the best for

Pandas’s APIs (F1-score 0.901), but the performance of our

method drops only slightly for Numpy’s and Matplotlib’s APIs

(F1-score 0.860 and 0.867 respectively).

Recall that we train the Baseline3’s model using sentences

mentioning some Pandas’s APIs. This model captures the

knowledge about orthographic features and semantic represen-

tations of Pandas’s APIs. Although Pandas’s APIs mentioned

in the testing dataset are different from those mentioned in the

training data, they are all from the same library, share similar

orthographic features, and serve the overall similar semantics.

As a result, the knowledge learned from some Pandas’s APIs

can help extract mentions of other Pandas’s APIs in the testing

dataset. However, this knowledge cannot be transfered to other

libraries that have different orthographic features and support

different functionalities. Therefore, the performance of the

Baseline3 drops significantly, especially for Matplotlib which

is more distant from Pandas than Numpy.

TABLE VII: The Impact of One Kind of Feature(s)

Precision Recall F1-score
Full-features 0.879 0.872 0.876
w/o orthographic features 0.842 0.871 0.858
w/o word representations 0.816 0.849 0.828
w/o gazetteer features 0.837 0.761 0.801
w/o word representations

0.745 0.447 0.559
and gazetteer features

In addition to orthographic features and semantic represen-

tations of API mentions, our method exploits two new features,

i.e., commonly-seen name synonyms and semantic represen-

tations of surrounding context of API mentions. Both features

are derived from unsupervised language models learned from

abundant unlabeled text. The knowledge about common syn-

onyms and semantics of surrounding context, albeit obtained

through unsupervised learning, makes our method more robust

than the Baseline3 for extracting mentions of Numpy’s and

Matplotlib’s APIs.

C. Feature Ablation

We ablate one kind of feature(s) at a time from our

full feature set (see Section IV-F) and study the impact of

different kinds of features on the API extraction performance.

Table VII reports the experiment results on precision, recall

and F1-score. For orthographic features ablation, we ablate

word shape and word type features, but retain the current

word itself and its surrounding words as feature. Without

orthographic features, the F1-score drops slightly to 0.858.

Without word-representation features for the current token and

its surrounding tokens, the F1-score drops to 0.828. Without

gazetteer feature, the F1-score decreases to 0.801.

This result implies that the performance of our method

is contributed by the combined action of all its features.

However, features from unsupervised word representations and

API inventory have a larger impact on the performance than

orthographic features of tokens. Without a particular kind

of features, our approach still outperforms the best baseline

method (i.e., Baseline3). However, when ablating both features

from word representations and API inventory, i.e., only ortho-

graphic features are retained, the performance of our method

deteriorates significantly, and becomes worse than both the

Baseline3 and the Baseline2. This indicates the importance of

our word-representation and gazetteer features.

D. The Impact of Self-Training

When training the CRF model, we perform 10 iterations

of self-training. Figure 3 shows the change of the F1-score

for extracting all API mentions after each iteration. We can
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see that even without self-training, the CRF model trained

using only human labeled sentences (i.e., at #iteration=0) still

outperforms the Baseline3. With the increase of self-training

iterations, the F1-score increases monotonically. From the

iteration 1 to 3 and from the iteration 8 to 10, the F1-score

is relatively stable (with less than 0.2% increase). However,

the F1-score increases about 2% from the iteration 4 to 7.

This implies that the retraining of the model with machine

labeled sentences in the first few iterations does not expand

the model much. As sufficient machine labeled sentences are

accumulated after the first few iterations, the self-training starts

taking effect. However, the effect diminishes after several

iterations, and then the model becomes relatively stable.

Self-training works as it exposes the model with similar but

not exactly the same sentences as those already in the training

set (recall that we set α at 0.8, not 1.0). If the newly added

sentences are almost the same as the existing sentences in

the training set, it reinforces the model. If the newly added

sentences have small differences from the existing ones, these

small differences will be captured by the model once enough

instances have been accumulated. In this way, the model is

expanded with new knowledge that has not been seen in the

existing training set. However, there is an upper bound of self-

training, after which retraining the model with more machine

labeled sentences makes little impact on the performance.

VII. DISCUSSION

Finally, we discuss the generality of our approach and the

threats to validity of our study.

A. The Generality of Our Approach

Our experiments demonstrate the generality of our approach

for extracting API mentions of three very different Python

libraries from Stack Overflow sentences. To expand our ap-

proach to a new library, users need to prepare two kinds

of information, i.e., unsupervised language models and API

inventory. To learn unsupervised language models, users only

need to collect a large corpus of unlabeled text, for example,

Stack Overflow posts that are tagged with the library name.

Then, the learning is completely unsupervised. To construct

API inventory, users need to crawl standard API names from

official API websites, and then extend the standard API names

with commonly-seen synonyms. The identification of common

synonyms is semi-automatic, based on human observation of

unsupervised Brown clusters.

Feature ablation experiments show that with unsupervised

language models, our approach can already achieve good

performance. With small effort to construct the API inventory,

the performance can be further boosted up. If the optimal

performance is desired, users may also consider spending some

manual efforts to annotate a small set of sentences mentioning

APIs of the target library and retrain the model through the

self-training process. To better support cross-library (or even

cross-language) API extraction, we leave it as a future work

to explore domain-adaptive self-training [19]. Our current

self-training mechanism is a simple process, while domain-

adaptive self-training aims to capture the entity differences

and sentence context variances when transferring from one

domain to another.

B. Threats to Validity
A major threat to validity of our approach is human la-

beling of training and test sentences. The incorrect human

labels would potentially have negative effects on the modeling

training and testing. To alleviate this threat, the authors cross-

checked the labeling results and resolved any disagreements in

the labeling results. However, sometimes even humans cannot

disambiguate whether a token is an API mention or not,

especially for common nouns that refer to basic computing

concepts, for example, array and dataframe which can be

basic computing concepts or APIs (Numpy’s array package,

Pandas’s DataFrame class). In our experiments, we take a

conservative strategy and do not label the token ‘array’ and

‘dataframe’ as API mentions unless both authors agree.

Another issue we encounter in data labeling is the API

evolution. For example, a user mentions “You can also down-

sample using the asof method of pandas.DateRange objects”.

From the sentence context, we label pandas.DateRange as an

API mention. However, we could not find pandas.DateRange
in the official API reference of the Pandas library. We searched

the Web and found that pandas.DateRange is an API in

an old version of Pandas, and has been renamed as pan-
das.data range. In such cases, we still labeled the token as

an API mention. However, such cases are rare.

VIII. CONCLUSION

This paper addresses a long-avoided challenge in API

extraction, i.e., the ambiguity between the API sense and

the normal sense of a common-word in informal natural

language sentences. We tackle the challenge by exploiting

name synonyms and semantic context features derived from

unsupervised word representations learned from the abundant

unlabeled text. Our evaluation shows that using these as fea-

tures in the conditional random field model, together with self-

training, makes our approach robust and accurate for extracting

fine-grained common-word API mentions, even in the face

of the wide presence of API-mention and sentence-context

variations in informal social discussions. In the future, we

will investigate downstream applications that could be enabled

by our fine-grained API extraction technique, including API

linking, API search, and API-related issue-solution mining in

software engineering social content.
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