
scvRipper: Video Scraping Tool for Modeling
Developers’ Behavior Using Interaction Data

Lingfeng Bao1, Jing Li2, Zhenchang Xing2, Xinyu Wang §1, and Bo Zhou1

1College of Computer Science, Zhejiang University, Hangzhou, China
2School of Computer Engineering, Nanyang Technological University, Singapore
{lingfengbao, wangxinyu, bzhou}@zju.edu.cn; {jli030, zcxing}@ntu.edu.sg;

Abstract—Screen-capture tool can record a user’s interaction
with software and application content as a stream of screenshots
which is usually stored in certain video format. Researchers have
used screen-captured videos to study the programming activities
that the developers carry out. In these studies, screen-captured
videos had to be manually transcribed to extract software usage
and application content data for the study purpose. This paper
presents a computer-vision based video scraping tool (called
scvRipper) that can automatically transcribe a screen-captured
video into time-series interaction data according to the analyst’s
need. This tool can address the increasing need for automatic
behavioral data collection methods in the studies of human
aspects of software engineering.
Demo video: https://www.youtube.com/watch?v=DElYOhids8Y

I. INTRODUCTION

An important area in studying human aspects of soft-

ware engineering is to model and analyze the developers’

information needs and behavior patterns in different software

development tasks [1, 2].This is important for informing the

design of new kind of programming tools tailored to observed

patterns and strategies [3]

Researchers have used human observer, think aloud, soft-

ware instrumentation, and screen-capture videos to collect de-

velopers’ behavior data in software development tasks. Among

these data collection methods, screen-captured videos provide

an unobtrusive, generic and easy-to-deploy method to record

the developers’ interaction with not only the IDE and the

program but also with other software tools and application

content (e.g., web browsers to search online resources, search

queries issued, web page visited) that the developers use in

software development.

To perform quantitative analysis of developers’ behavior,

researchers had to manually transcribe screen-captured videos

into software usage and application content data. The ratio of

video recording time and analysis time was reported to be 1:4

- 1:7. For example, Ko and Myers [3] reported “... analysis

of video data by repeated rewinding and fast-forwarding...” in

their study of software errors in programming systems.

As the amount of research on human aspects of software

engineering has increased in recent years, there has been a

greater need to come up with a solution to automatically ex-

tract software usage and application content data from screen-

§Xinyu Wang is the corresponding author

captured videos. This technique will facilitate the modeling

and analysis of developers’ behavior in software engineering

research and practices.

This paper presents our computer-vision-based video scrap-

ing technique and tool (called scvRipper). The scvRipper tool

can recognize window-based applications in screen-capture

videos, and extract application content from the recognized ap-

plication windows. We discuss the design and implementation

of our scvRipper tool in Section II and Section III. We briefly

describe a case study of the scvRipper tool in Section IV.

II. TOOL DESIGN

Fig. 1 presents the architecture of our video scraping tool.

The scvRipper tool takes as input a screen-captured video,

i.e., a stream of screenshots taken by screen-capture tools. It

recognizes application windows in the screenshots based on

the definition of application windows provided by the analyst.

It produces as output time-series interaction data (i.e., software

usage and application content over time) extracted from the

screen-captured video.

���������	
���������	�������

����������	
��������� ��

���������	���������	��	
�������	�����

���������	���������	
�����	����

��������	��������	
�����	����

������� ������� �� ����
���������� ������	

��������������
�����

��������� ��	�����
������	���	

��	�������������
�����������

����������	��	

���������	������	

��������� ������
��������	

��������� ��������� ��
������� �����

���������	���������	��	
�������	�����

��������� ���������
����� ����

���������	���������	
�����	����

�������� ��������
����� ����

��������	��������	
�����	����

��������� ������
��������	

��������� ������
��������	

������� �	��

���������� �������

Fig. 1. The Architecture of Our Video Scraping Tool

A. Definition of Application Window

The definition of an application window “informs” the

scvRipper tool with the window layout, the sample images

of distinct visual cues of the window’s GUI components,

and the GUI components to be scraped once they are rec-

ognized. Fig. 2 shows the metamodel of application windows.

The scvRipper tool assumes that an application window is

composed of a hierarchy of GUIComponents. Rows and

windows define the layout of the application window. A row

or window can contain nested rows, nested windows, and/or

leaf GUIItems. Rows and GUIItems have relative positions in

the application window (denoted as index), while windows do

not have. A GUIItem contains an order set of VisualCues. A

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.220

673

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.220

673

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.220

673

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.220

673

2015 IEEE/ACM 37th IEEE International Conference on Software Engineering

978-1-4799-1934-5/15 $31.00 © 2015 IEEE

DOI 10.1109/ICSE.2015.220

673 ICSE 2015, Florence, Italy
Demonstrations

��������	
	�

���� ������
����	����� ����

!��
����"
��

������ #�

���
����"
��

�������

��� ������
����	 ���$
���%
�	���&�� ����

'(()*�����+

Fig. 2. The Metamodel of Application Windows

VisualCue contains a set of sample images of the visual cue. A

VisualCue can be unique (isunique = ture) in an application

window. The GUIComponents whose tobescraped = true
will be scraped from the application window.

Fig. 3 shows partially the definition of the Eclipse IDE

window and the Google Chrome Window. This definition of

the Eclipse window assumes that the Eclipse window consists

of a GUIItem (TitleBar) and four rows (Menu, ToolBar,

MainContent, and StatusBar) from top down. We omit the

definition details of Menu, ToolBar and StatusBar due to

space limitation. The TitleBar contains a unique VisualCue

(Eclipse application icon). MainContent row may contain

CodeEditor windows and ConsoleView windows. CodeEdi-

tor window contains FileTab and EditArea GUIItems. These

two GUIItems contain non-unique visual cues (such as Java

file icons, compile error icons). This definition instructs the

scvRipper tool to scrape CodeEditor and ConcoleView content

from the Eclipse window.

The definition of the Chrome window assumes that the

Chrome window consists of two rows from top down: Header

and WebPage. The Header contains three GUIItems from left

to right: NavigationPart, AddressBar, and Tool. Navigation-

Part contains three VisualCues from left to right: GoBack,

GoForward, and Refresh buttons. These buttons are unique in

the Chrome window. The WegPage may contain a SearchBox

GUIItem as commonly seen in search engine webpages. A

SearchBox has a unique Search button VisualCue. This def-

inition instructs scvRipper to scrape AddressBar, SearchBox

and WebPage from the Chrome window.

B. Video Scraping Process

The scvRipper tool essentially uses computer-vision tech-

niques to transcribe a stream of screenshots that only human

can interpret into a stream of interaction data that computer

can automatically analyze or mine for behavioral patterns

(see our tenical report [4]). First, the scvRipper tool uses

image differencing technique [5] to detect screenshots with

distinct content in the screen-captured video. This step filters

out the screenshots with no differences due to no human-

computer interaction or with only small differences due to

mouse movement, button click or small scrolling.

Then, the core algorithm of the scvRipper tool processes one

distinct-content screenshots at a time to recognize application

windows in the screenshot in four steps: 1) detect horizontal

and vertical lines, 2) detect individual visual cues, 3) group

detected visual cues, and 4) detect window boundaries. The

scvRipper’s algorithm can accurately recognize stacked or

������

,���� ���-��

./������-��

����" 0 1 ����" 0 2
����	����� 0 ����

����" 0 1

#� ��3

����	 0
�	���&�� 0 ����

#� 4�����

����	 0
�	���&�� 0 ����

!����	�

����	 0
�	���&�� 0 ����

�����		��
����" 0 2
����	����� 0 ����

�����

����	 0
�	���&�� 0 ����

����
����" 0 5

����

����	 0
�	���&�� 0 ����

�������"
����" 0 1
����	����� 0 ����

�����

����	 0
�	���&�� 0 ����

(a) Definition of Google Chrome Window

6����	�

7��� ������ 7��������� ����	��
����" 0 2 ����" 0 5 ����" 0 8 ����" 0 9

:/4���

����	 0
�	���&�� 0 ��	�

���	���

����	 0
�	���&�� 0 ��	�

�������
����" 0 1

����	����� 0 ����� � � �� � � �
����6�����

����	����� 0 ����
���	�������

����" 0 2� � 2� � 2
6������4�����

����" 0 1

6����	�
���

����	 0
�	���&�� 0 ����

���	�����
����" 0 1 ����" 0 2� � 2� � 2

��	��;���

���	

����	 0
�	���&�� 0 ��	�

(b) Definition of Eclipse IDE Window

Fig. 3. Two Instances of Application-Window Metamodel

side-by-side windows. The recognized application windows

identify software used at a specific time in the video.

Finally, scvRipper scrapes the GUIComponent images from

the recognized application windows in the screenshot as spec-

ified in the definition of application windows. It uses Optical-

Char-Recognition (OCR) technique to convert the scraped

GUIComponent images into textual application content that

the developer used at a specific time in the video.

The upper part of Fig. 4 shows an illustrative example of

a screen-captured video. Assume that a developer views two

web pages side-by-side in the two Chrome windows. He then

maximizes one of the Chrome windows. After a while, he

switches from the Chrome window to an Eclipse IDE window.

He opens two different files in Eclipse and read the code. Next

he switches from the Eclipse window back to the Chrome

window. In this example, four distinct-content screenshots can

be identified at five time periods. Note that the screenshots at

time periods t2 − t3 and t5 − t6 are the same.

The lower part of Fig. 4 shows the time-series interaction

data that the scvRipper tool extracts from these four distinct-

content screenshots. Bulky contents (e.g., web page, code

fragment) are omitted due to space limitation. This time-series

interaction data identifies the software tools that the developer

used at different time periods. It also identifies the application

content that the developer processed (such as search queries,

websites visited, code fragments, and runtime exceptions) at

differen time periods.

III. TOOL IMPLEMENTATION

We have developed a configuration tool to aid the definition

of application windows. The tool can define the hierarchy of

GUIComponents, configure the attributes of GUIComponents,

and attach sample images of visual cues to GUIComponents.

Fig. 5 shows the screenshot of the configuration tool in

674674674674674 ICSE 2015, Florence, Italy
Demonstrations

����

����	�
�

����� ���� ����� ����� ������

������� ������
�!<�
��������	���������
��������		�������������	��
=���;�
�	���
 ���
������

������� ������
�!<
��������	��������
=���;
�	���
 ���
������

������� 6����	�
����
���������� ���
���	���
!		���	������
��"������

������� 6����	�
����
#���	������
� ���
���	���
!		���	������
��"������

������� ������
�!<
��������	��������
=���;
�	���
 ���
������

Fig. 4. An Illustrative Example Of a Screen-Captured Video and Video Scraping Results

defining the Eclipse IDE window and the Google Chrome

window shown in Fig. 3.
Collecting sample images of visual cues often require

certain efforts. However, this task usually need to be done only

once. The definition of an application window can be applied

to screen-captured videos taken in different screen resolutions

and window color schema, as neither window definition nor

computer-vision techniques that scvRipper uses are sensitive

to screen resolutions and window color schema.

Fig. 5. The Configuration Tool for Window Definition

���������	
������
�������
��

�������������� ��������

����������������	��� ����������
��������

Fig. 6. The Screenshot of scvRipper

We have implemented our scvRipper tool using OpenCV
(opencv.org, an open-source computer vision library). The core

algorithm of the scvRipper) tool has been implemented using

the OpenCV’s efficient computer-vision algorithms, such as

candy edge map for detecting horizontal and vertical lines,

keypoint based template matching for detecting individual vi-

sual cues, and normalized min-mix cut algorithm for grouping

detected visual cues.

Fig. 6 shows the Graphical User Interface (GUI) of the

scvRipper tool. The analyst can select a screen-captured video.

The scvRipper tool parses the video and detect distinct-content

screenshots. It lists the distinct-content screenshots in the left

panel. The analyst can analyze one screenshot at a time or

analyze all the screenshot in batch mode. The scvRipper tool

visualizes the intermediate image processing results in the

right panel, such as the detected horizontal and vertical lines,

the detected visual cues, and the detected window boundaries.

The analyst can zoom-in and inspect these intermediate results

to determine the quality of the video-scraped data.

IV. CASE STUDY

We evaluated the usefulness, effectiveness and runtime

performance of our scvRipper tool using the 29 hours screen-

captured task videos from our previous study [6]. Our previous

study was to study developers’ online search behavior during

software development. It included two development tasks:

1) develop a new P2P chat software, and 2) fix bugs and

extends an existing Eclipse editor plugin. 11 graduate students

were recruited in the first task, and 13 different graduate

students were recruited in the second task from the School of

Computer Science, Fudan University. We briefly summarized

our empirical results here. Interested readers are referred to

our technical report [4] for detailed discussions .

Based on the time-series interaction data that the scvRipper
tool extracted from the task videos, we performed two quanti-

tative analysis of the participants’ online search behavior dur-

ing the two software development tasks. First, we computed a

probabilistic model of the participants’ search frequencies and

intervals. Second, we studied the dynamics of the participants’

working context over time. These two quantitative analysis

demonstrated the usefulness of the video-scraped interaction

data for modeling and analyzing developers’ behavior.

We randomly sampled 500 distinct-content screenshots from

different developers’ task videos at different time periods.

We qualitatively examined the intermediate image processing

results of our scvRipper tool, including the representativeness

of these distinct-content screenshots, the detected application

windows in these sampled screenshots, and the OCR accuracy

of the scraped search query keywords. Our analysis confirmed

the effectiveness and accuracy of the scvRipper tool.

Our evaluation ran the scvRipper tool on a Window 7

675675675675675 ICSE 2015, Florence, Italy
Demonstrations

computer with 4GB RAM and Intel(R) Core(TM)2 Duo CPU.

Our results identified the bottleneck of the tool’s runtime

performance. The most time-consuming step of the scvRipper
tool was the step for detecting individual visual cues. This step

consumes about 97% of the processing time of distinct-content

screenshots. The current tool implementation sequentially de-

tects visual cues in a screenshot one at a time. The runtime per-

formance of the scvRipper tool could be significantly improved

by parallel computing [7] and hardware-implementation of

template-matching algorithm [8].

V. RELATED WORK

Computer vision techniques have been used to identify user

interface elements from screen-captured images or videos.

Prefab [9] models widgets layout and appearance of an user

interface toolkit as a library of prototypes. A prototype consists

of a set of parts (e.g., a patch of pixels) and a set of constraints

regarding those parts. Prefab identifies the occurrence of

widgets from a given prototype library in an image of an

user interface by first assigning image pixels into parts from

the prototype library and then filtering widget occurrences

according to the part constraints. Waken [10] uses image

differencing technique to identify the occurrence of cursors,

icons, menus, and tooltips that an application contains in

screen-captured videos. Sikuli [11] uses template matching

techniques [12] to find GUI patterns on the screen.

These computer-vision based techniques inspired the design

and implementation of our video scraping technique, includ-

ing the metamodel of application windows, the detection of

distinct-content screenshots, and the detection of application

windows. These existing techniques have focused on visual

search, GUI automation, and implementing new interaction

techniques. In contrast, the scvRipper tool focuses on extract-

ing time-series interaction data from screen-captured videos.

Unlike the video data that only human can interpret, the

extracted time-series interaction data can be automatically

analyzed to discover behavioral patterns.

Instrumentation techniques [13, 14] can directly log a user’s

interaction with software tools and application content. They

usually requires the support of sophisticated reflection APIs

(e.g., Accessability API or UI Automation API) provided by

applications, operating systems and GUI toolkits. Furthermore,

a user can use several software tools (e.g., Eclipse IDE,

different web browsers) in his work. Instrumenting all these

software tools require significant efforts. The scvRipper tool

provides a generic and easy-to-deploy solution to collect

software usage and application content data across several

applications.

Some work proposes to combine low-level operating system

APIs and computer vision techniques to track human computer

interaction. Hurst et al. [15] leverages image differencing

and template matching techniques to improve the accuracy

of target identification that the users click. Chang et al. [16]

proposed a hybrid framework for detecting text blobs in user

interface by combining pixel-based analysis and accessibility

metadata of the user interface. In contrast, The scvRipper tool

analyzes screen-captured videos without using accessibility

information.

VI. CONCLUSION

This paper presented our computer-vision-based video-

scraping tool (called scvRipper) that can automatically extract

time-series interaction data from screen-captured videos. Our

scvRipper tool is generic and easy to deploy. It can collect

software usage and application content data across several ap-

plications according to the analyst’s need. The extracted time-

series interaction data can be used to quantitatively model and

analyze developers’ behavior during software development.

Our scvRipper tool can address the increasing need for

automatic behavioral data collection methods in the studies

of human aspects of software engineering. In the future we

will improve the scvRipper tool’s runtime performance using

parallel computing and hardware acceleration. We are also

interested in combining operating system level instrumenta-

tion (e.g., mouse and keystroke) with the core algorithm of

scvRipper to collect more accurate time-series interaction data.

ACKNOWLEDGMENT

This research was supported by the National Basic Re-

search Program of China (the 973 Program) under grant

2015CB352201, and National Key Technology R&D Program

of the Ministry of Science and Technology of China under

grant 2014BAH24F02. This work is supported by NTU SUG

M4081029.020 and MOE AcRF Tier1 M4011165.020.

REFERENCES

[1] A. J. Ko, B. A. Myers, M. J. Coblenz, and H. H. Aung, “An exploratory
study of how developers seek, relate, and collect relevant information
during software maintenance tasks,” IEEE Trans. Softw. Eng., vol. 32,
no. 12, pp. 971–987, 2006.

[2] J. Lawrance, C. Bogart, M. Burnett, R. Bellamy, K. Rector, and S. D.
Fleming, “How programmers debug, revisited: An information foraging
theory perspective,” IEEE Trans. Softw. Eng., vol. 39, no. 2, pp. 197–
215, 2013.

[3] A. J. Ko and B. A. Myers, “A framework and methodology for studying
the causes of software errors in programming systems,” J VISUAL LANG
COMPUT, vol. 16, no. 1, pp. 41–84, 2005.

[4] https://sites.google.com/site/jinglisites/home/project.
[5] D.-C. Wu and W.-H. Tsai, “Spatial-domain image hiding using image

differencing,” Proc. ICCVISP, vol. 147, no. 1, pp. 29–37, 2000.
[6] H. Li, Z. Xing, X. Peng, and W. Zhao, “What help do developers seek,

when and how?,” in Proc. WCRE, pp. 142–151, 2013.
[7] Q. Zhang, Y. Chen, Y. Zhang, and Y. Xu, “Sift implementation and

optimization for multi-core systems,” in Proc. IPDPS, pp. 1–8, 2008.
[8] S. N. Sinha, J.-M. Frahm, M. Pollefeys, and Y. Genc, “Gpu-based video

feature tracking and matching,” in EDGE, Workshop on Edge Computing
Using New Commodity Architectures, vol. 278, p. 4321, 2006.

[9] M. Dixon and J. Fogarty, “Prefab: implementing advanced behaviors
using pixel-based reverse engineering of interface structure,” in Proc.
CHI, pp. 1525–1534, 2010.

[10] N. Banovic, T. Grossman, J. Matejka, and G. Fitzmaurice, “Waken:
reverse engineering usage information and interface structure from
software videos,” in Proc. UIST, pp. 83–92, 2012.

[11] T. Yeh, T.-H. Chang, and R. C. Miller, “Sikuli: using gui screenshots
for search and automation,” in Proc. UIST, pp. 183–192, 2009.

[12] D. A. Forsyth and J. Ponce, Computer vision: a modern approach.
Prentice Hall Professional Technical Reference, 2002.

[13] D. M. Hilbert and D. F. Redmiles, “Extracting usability information from
user interface events,” ACM Comput. Surv., vol. 32, no. 4, pp. 384–421,
2000.

[14] J. H. Kim, D. V. Gunn, E. Schuh, B. Phillips, R. J. Pagulayan, and
D. Wixon, “Tracking real-time user experience (true): a comprehensive
instrumentation solution for complex systems,” in Proc. CHI, pp. 443–
452, 2008.

[15] A. Hurst, S. E. Hudson, and J. Mankoff, “Automatically identifying
targets users interact with during real world tasks,” in Proc. IUI, pp. 11–
20, 2010.

[16] T.-H. Chang, T. Yeh, and R. Miller, “Associating the visual represen-
tation of user interfaces with their internal structures and metadata,” in
Proc. UIST, pp. 245–256, 2011.

676676676676676 ICSE 2015, Florence, Italy
Demonstrations

