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Domain Generalization for Named Entity Boundary
Detection via Meta-Learning

Jing Li, Shuo Shang and Lisi Chen

Abstract—Named entity recognition (NER) aims to recognize
mentions of rigid designators from text belonging to predefined
semantic types such as person, location, organization etc. In this
paper, we focus on a fundamental sub-task of NER, Named Entity
Boundary Detection which aims at detecting the start and end
boundaries of an entity mention in the text, without predicting
its semantic type. The entity boundary detection is essentially a
sequence labeling problem. Existing sequence labeling methods
either suffer from sparse boundary tags (i.e., entities are rare and
non-entities are common) or they cannot well handle the issue of
variable size output vocabulary (i.e., need to retrain models with
respect to different vocabularies). To address these two issues, we
propose a novel entity boundary labeling model which leverages
pointer networks to effectively infer boundaries depending on the
input sequence. On the other hand, training models on source
domains that generalize to new target domains at test time is
a challenging problem because of the performance degradation.
To alleviate this issue, we propose METABDRY, a novel domain
generalization approach for entity boundary detection without
requiring any access to target domain information. Specially,
adversarial learning is adopted to encourage domain-invariant
representations. Meanwhile, meta-learning is used to explicitly
simulate a domain shift during training so that meta-knowledge
from multiple resource domains can be effectively aggregated. As
such, METABDRY explicitly optimizes the capability of “learning
to generalize”, resulting in a more general and robust model to
reduce the domain discrepancy. We first conduct experiments
to demonstrate the effectiveness of our novel boundary labeling
model. We then extensively evaluate METABDRY on eight datasets
under domain generalization settings. The experimental results
show that METABDRY achieves state-of-the-art results against
recent seven baselines.

Index Terms—Named entity recognition (NER), sequence la-
beling, domain generalization, meta-learning

I. INTRODUCTION

AMED Entity Recognition (NER) aims at jointly resolv-
N ing the boundaries (i.e., start and end positions) and type
of a named entity (e.g., person, location and organization)
in text [1]. NER is a fundamental task in natural language
processing (NLP) and has attracted increasing attention in the
field of artificial intelligence [2]. In this paper, we ignore
the entity typing and focus on the sub-task of named entity
boundary detection, which involves detecting the start and end
boundaries of an entity mention in text.

This sub-task is interesting and important for several
reasons. First, fine-grained entity typing systems, such as
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Example: Results from Stanford NER

The CReW also offers employees and up to [3]numser Of
their guests, free entry to the Zoo, [River]re Safari, [Bird
Park] Locarion and our latest offering, the [Night] tve Safari.

Example: Results from Our Approach

The CReW also offers employees and up to 3 of their guests, free
entry to the Zoo, River Safari, Bird Park and our latest offering,
the Night Safari.

Fig. 1. Motivating examples.

FIGER [3], FINET [4], AFET [5], and SANE [6], have
recently gained significant research interest. Most studies on
fine-grained typing either manually label entity boundaries
or assume that entity boundaries have already been pre-
detected [4], [7]. It then becomes a multi-label classification
task. Fine-grained typing systems require type-ignored en-
tity mentions as independent input, posing an overwhelming
demand for more accurate and robust boundary detection
approaches. Second, an alternative solution is to utilize off-the-
shelf NER systems to detect named entity boundaries [4], [5].
However, off-the-shelf systems are not specifically designed
for entity boundary detection. As shown in Figure 1, Stanford
CoreNLP is unable to correctly identify the entities CReW,
River Safari and Night Safari. As a consequence, errors made
in entity boundary detection inevitably mislead and adversely
affect subsequent entity-typing systems. Third, ignoring entity
types results in a homogeneous label space for all entities from
heterogeneous domains. This can be helpful for generalizing a
robust cross-domain model to detect named entity boundaries.

Essentially, named entity boundary detection can be treated
as a sequence labeling problem, where the task is to predict
a sequence of ‘yes/no’ boundary tags at word level in a
sentence to identify the start and end positions of an entity
mention. Existing sequence labeling techniques can be broadly
categorized into two paradigms: (i) recurrent neural networks
with conditional random fields (RNN-CRF) [8]-[10]; (ii) one
RNN to encode input sequences and another RNN as a
language model to generate the output sequence (RNN-RNN)
[11], [12]. However, due to the sparsity of ‘yes’ boundary tags
(i.e., entities are rare and non-entities are common), CRFs
did not provide any additional gain over simple classifiers
like MaxEnt [13], [14]. On the other hand, when applying
RNNs for predictions, they cannot well handle the issue of
variable size output vocabulary (i.e., need to retrain models
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with respect to different vocabularies) [15], [16]. Here, we
seek a new sequence labeling approach to alleviate these two
issues.

Off-the-shelf systems often suffer from a shift in data
distribution from the test data, resulting in poor performance.
Some studies [17]-[22] have investigated domain adaptation
in NER, aiming to transfer knowledge from one source domain
to another target domain, requiring some instances from the
target domain to perform adaptation. Instead, we target on
a more ambitious task, domain generalization, which is a
particularly challenging problem setting as we assume no
access to any target information. That is, the model should
be general and robust enough to perform well in new unseen
domains, without further parameter updates [23]. Just like
recently proposed GPT-3 which is applied without any gradient
updates or fine-tuning', the key idea of this paper is to utilize
the abundant data from multiple resource domains to aggregate
meta-knowledge for named entity boundary detection.

Recently, meta-learning [24]-[26] has received resurgence
in the context of few-shot learning. However, meta-learning
focuses on learning how to learn or to quickly adapt to new
information with little data. Inspired by MAML [26] and
feature-critic networks [27], we apply meta-learning in the
domain generalization setting to distill meta-knowledge from
multiple resource domains by explicitly simulating a domain
shift during training. In this way, the validation error on unseen
domains can serve as a type of feedback to guide the learning
of a general model. Moreover, we also incorporate adversarial
learning to further encourage domain-invariant representations
during training. In summary, the main contributions of this
work are four-fold:

o To the best of our knowledge, we are the first to study
the problem of transferring meta-knowledge learned from
multiple source domains for sequence labeling in a meta-
learning manner.

« We cast named entity boundary detection as a sequence
labeling problem, and then propose a novel boundary
labeling model. It has the key advantages of inherently
handling variable size output vocabulary and addressing
the issue of boundary tag sparsity. Experimental results
show that our model achieves state-of-the-art perfor-
mance in sequence labeling.

o We propose METABDRY, a novel domain generalization
approach for named entity boundary detection, which in-
corporates adversarial learning and meta-learning during
training to encourage domain generalization.

o We extensively evaluate METABDRY on eight datasets
under domain generalization settings. The experimental
results show that METABDRY achieves state-of-the-art
performance in reducing the domain discrepancy, against
seven recent baselines.

II. RELATED WORK

Our research is related to two research topics: named entity
recognition (NER) and meta-learning.

Uhttps://github.com/openai/gpt-3
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1) Named Entity Recognition (NER): There are three com-
mon paradigms for NER [1]: knowledge-based unsupervised
systems, feature-based supervised systems and neural-based
systems. Recently, many neural architectures have been widely
applied in NER because neural-based systems have the ad-
vantage of inferring latent features and learning sequence
labels in an end-to-end fashion. Thus, we focus on describing
neural-based systems. The use of neural models for NER was
pioneered by [28], where an architecture based on temporal
convolutional neural networks (CNNs) over word sequence
was proposed. Since then, there has been a growing body of
work on neural-based NER. Existing neural-based systems can
be unified into a framework with three components: an input
representation, context encoder and tag decoder. Commonly-
used input representations include word-level and character-
level representations [8], [29]-[31]. Widely-used context en-
coder architectures include CNNs [28], recurrent neural net-
works (RNNs) [10], recursive neural networks [32] and deep
transformers [33]. At the top of context encoder, a conditional
random field (CRF) layer [34] or RNN layer [12] is employed
to make sequence label predictions.

A few works have already explored transfer learning in
NER. Transfer learning aims to perform a machine learning
task on a target domain by taking advantage of knowledge
learned from a source domain [35]. In the setting of transfer
learning, different neural models for NER commonly share
certain parts of model parameters between the source task and
target task. Yang er al. [17] first investigated the transferability
of different layers of representations. Pius and Mark [18] ex-
tended Yang’s approach to allow joint training on the informal
corpus and incorporate sentence-level feature representations.
Jia et al. [36] utilized the cross-domain language model as a
bridge across domains to design a novel parameter generation
network. Zhou et al. [21] proposed two adversarial transfer
network to explore effective feature fusion between high and
low resource domains. Different from these parameter-sharing
architectures, some methods [20], [37] apply transfer learning
in NER by first training a model on a source task and then
using it on the target task for fine-tuning. Recently, Li et
al. [38] proposed an adversarial approach to transfer knowl-
edge between two domains, rather than multiple domains. In
addition, Li’s approach needs access to the target domain
information (i.e., some unlabeled target domain data) for
performing adaptation.

Compared with these existing architectures, the main dif-
ference in our proposed sequence labeling model is that
our tag decoder is a pointer network, not a CRF. It can
effectively capture sequential dependencies when boundary
tags are sparse. Moreover, our work is the first to aggregate
meta-knowledge from multiple resource domains to increase
the transferability rather than from one single domain.

2) Meta-learning: Meta-learning (a.k.a. learning to learn)
[24], [25] aims to learn a general model that can quickly adapt
to a new task given very few training samples without needing
to be retrained from scratch. Most recent approaches to meta-
learning focus on few-shot learning and can be broadly cate-
gorized as metric-based methods [39], memory-based methods
[40], and optimization-based methods [26]. A few methods
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Fig. 2. An overview of our proposed METABDRY, a domain generalization approach for named entity boundary detection. METABDRY explicitly simulates
domain shift during the training process via meta-learning. In the meta-training phase, the adapted parameters (6;,¢;, ;) are learned from Dy;. In the
meta-validation phase, the base model is updated by gradient descent with respect to the parameters (6, @, @) on Dyq;-

[27], [41]-[43] have applied meta-learning strategies for image
classification in zero-shot learning.

Meta-learning for NLP is less common than for computer
vision. There are a few attempts that have been devoted to
the application of meta-learning to NLP in the last two years.
Gu et al. [44] extended the Model- Agnostic Meta-Learning
(MAML) approach [26] for low-resource neural machine
translation. Huang et al. [45] proposed a method for natural
language to structured query generation based on MAML,
by reducing a regular supervised learning problem to the
few-shot meta-learning scenario. Qian and Zhou [46] trained
a dialog system model using multiple rich-resource single-
domain dialog data by applying the MAML algorithm to the
dialog domain. Lin et al. [47] proposed to cast personalized
dialogue learning as a meta-learning problem, which allows
the model to generate personalized responses by efficiently
leveraging only a few dialogue samples instead of human-
designed persona descriptions. Obamuyide and Vlachos [48]
framed relation classification with a meta-learning perspective.
They proposed a MAML protocol for training relation clas-
sifiers that explicitly learn a model parameter initialization
for enhanced predictive performance in limited supervision
settings. Hu et al. [49] formulated the learning of out-of-
vocabulary embedding as a few-shot regression problem. Fur-
thermore, they proposed a simulated episode-based training
schema to predict oracle embeddings, leveraging MAML for
adapting the learned model to the new corpus fast and robustly.

Different from the above studies on few-shot learning, our
work investigates a more challenging setting, i.e., the domain
generalization problem, where the target instances are not
accessed during the final testing. To the best of our knowledge,
our work is the first attempt in adapting meta-learning to
sequence labeling.

III. METABDRY: NAMED ENTITY BOUNDARY DETECTION
VIA META-LEARNING

In this section, we first introduce the problem setup of do-
main generalization for named entity boundary detection. Then

we give a detailed description of the proposed METABDRY.

A. Problem Setup

Suppose that there are K source (training) domains D =
{D1,...,Dg,..., Dk}, where Dy is the k-th source domain
containing annotated data pairs (X, V). For our named entity
boundary detection problem, the input space X}, is the raw text
(e.g., words) and the label space ) is composed of entity
boundary tags that indicate the start and end positions of a
named entity. The ultimate goal is to use the source domain
data set D to learn a parametric model fg(-) : X — Y,
where the learnable parameters ® are able to generalize well
to a novel target (testing) domain D;.s; (an unseen domain
in training), without requiring any knowledge of the target
domain during training.

B. Model Overview

To solve the above domain generalization problem, we
propose METABDRY, as shown in Figure 2. We design
METABDRY based on three key considerations: (i) We expect
that the extracted sequence features should be as general as
possible so that they are robust enough to perform well on
any unseen target domain without fine-tuning. (ii) We want to
explicitly simulate a domain shift during the training process
so that the validation error on an unseen domain can serve as
a type of feedback to guide learning. (iii) We expect that the
model should aggregate knowledge from a number of different
domains so that it can be directly applied to new domains.

Specifically, for (i), we integrate an adversarial network to
encourage internal domain-invariant representations. For (ii)
and (iii), we adopt a meta-learning [26] approach to distill
meta-knowledge from a number of domains. During each
iteration, we randomly split D into a meta-training set Dy,
and meta-validation set D,,;, where D = Dy, U D,, and
Dy N Dyt = 0. A meta-training task 7; is sampled from
Dy, and is composed of n instances per domain. The tag
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(a) Representation of an input word “Jordan”. (b) The architecture of pointer networks for entity boundary detection.
Fig. 3. An illustration of entity boundary detection with pointer networks. Input sentence: “Michael Jeffrey Jordan was born in Brooklyn, New York.”. The

identified entities by boundary detection are “Michael Jeffrey Jordan”, “Brooklyn” and “New York™.

decoder is used to detect named entity boundaries based on
intermediate representations from the context encoder. The
domain discriminator is used to judge which domain a training
instance belongs to. The adversarial network ensures that the
intermediate representations can mislead the domain discrimi-
nator and correctly guide the tag decoder prediction, while the
domain discriminator tries its best to correctly determine the
domain class of each training instance.

A meta-validation task 7; is sampled from D,;, and is also
composed of n instances per domain. Note that 7; is evaluated
on the parameters (6;,¢;,¢;) learned from Dy,. Finally,
METABDRY updates model parameters ¢ using the loss for
gradient descent with respect to the base parameters (6, ¢, ).
Our proposed METABDRY consists of three core components:
the boundary labeling model, the adversarial training and
the meta-learning strategies. Next, we will introduce each
component in detail.

C. Our Boundary Labeling Model

In this work, we propose a novel sequence labeling model
based on the pointer mechanism [15], [50]. Our sequence
labeling model has the following advantages. (i) It effectively
handles variable size vocabulary in the output to produce entity
boundaries depending on the input sequence. (ii) It effectively
handles sparse tags because entities are rare and non-entities
are common. Figure 3 shows the architecture of our boundary
labeling model, which has three key components: the input
representation, context encoder and tag decoder.

1) Input Representation: As shown in Figure 3(a), the input
representation in our model consists of character-level and
word-level representations. Given an input sentence W =
(W1, Wa,..., W) of length L, W € D, let W, denote
its [-th word. The character-level representation (extracted
by convolutional neural networks) and word-level embedding
(e.g., pretrained embedding) for W, are concatenated as its
final representation, x; € RP, where D represents the di-
mension of x;. Note that hand-crafted features and other
pretrained language embeddings can be easily integrated into
this architecture. However, we do not use any hand-crafted
features in this study.

2) Context Encoder: We encode the input sequence X =
(z1,23,...,21) using RNNs that are capable of capturing se-
quential dependencies. With hidden cells like long short-term
memory (LSTM) [51] and gated recurrent unit (GRU) [52],
an RNN captures long distance dependencies without running
into the problems of gradient vanishing or explosion. In our
implementation, we use the GRU which is computationally
cheaper than LSTM. Specifically, GRU activations at time step
l are computed as follows:

zi=0U,x;+ R.hi_1 +b,) (D
r=oc(U,x;+ R.hi_1 +b,) 2)
n; = tanh(Upx; + Rp(r; © hy—1) + by) 3
hi=z0h_1+(1—-2)0y “4)

where o(+) is the sigmoid function, tanh(-) is the hyperbolic
tangent function, ® is an element-wise multiplication, z; is
the update gate vector, r; is the reset gate vector, n; is the
new gate vector, and h; is the hidden state at time step [. U,
R, b are encoder parameters that need to be learned.

We use a bi-directional GRU (BiGRU) network to memorize
past and future information in the input sequence. Each hidden
state of the BiGRU is formalized as:

hi=h,® h, 5)

%
where @ indicates a concatenation operation, and h; and %l
are hidden states of the forward (left-to-right) and backward
(right-to-left) GRUs, respectively. Assuming the size of the

GRU layer is H, the encoder yields hidden states in h €
RLXQH.

3) Tag Decoder: At each step of decoding, our model
takes a word W; from the input sequence as input, and
transforms it to its distributed representation x; by looking
up the corresponding embedding matrix from the encoding
phase. It then passes x; through a GRU-based unidirectional
hidden layer. The hidden state at time step m is computed by:

dy = GRU (2, 7) (6)

where  are the parameters in the hidden layer of the GRU-
based RNN, which have the same form as defined in Equa-
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tions (1) — (4). Note that not every word from the input
sentence needs to be passed to the decoder GRU. As shown
in Figure 3(b), “Jordan” is the end boundary of the mention
“Michael Jeffrey Jordan”, so the two words “Jeffrey” and
“Jordan” will not be passed to the GRU. Supposing there
are .J time steps, the decoder GRU produces hidden states in
d € R7*2H with 2H being the dimensions of the hidden layer
of the decoder. Again, the encoder is bidirectional (hidden size
H), and the decoder is unidirectional (hidden size 2H).

In the pointing phase, our model detects entity boundaries
only if the current input is a start boundary. Otherwise, it will
switch the decoder status to inactive and no boundary will
be detected. In order to achieve this mechanism, we pad the
hidden states of the encoder with a sentinel word representing
inactive. That is, the decoder should point to this sentinel word
once the current input is no longer a start boundary of an
entity. Recall that h € RL*2H and d € R7*H are the hidden
states in the encoder and decoder, respectively. We first pad h
with a sentinel vector by h = [h;0], where h € R(E+1)x2H
Then, we use an attention mechanism [15] to compute the
distribution of end boundary over all possible positions in the
input sequence at decoding step m:

u = v’ tanh(G1h; + Gaod,y,), foric (m,...,M) (7)
P(Ym | T ) = softmax(u™) (8)

Here, v, G and G5 are learnable parameters, i € [m, M]
indicates a possible position in the input sequence, and softmax
normalizes u;", indicating the probability that word W; is an
end boundary, given the start boundary W,,,. When W, is not
a start boundary of any entity, the pointer is trained to point to
the padded word W 1, i.e., inactive. For example, our model
points to “inactive” when given “was” as the decoder input in
Figure 3(b).

D. Adversarial Training Strategy

Recall that h € R?# is the hidden state of the last step
in the context encoder. We apply a Multi-Layer Perceptron
(MLP) to predict domain labels y,:

w = softmax(tanh(h- P + p)) )
(10
1D
The tag prediction loss and the domain prediction loss are

calculated over the meta-training samples in task 7; from D,.
These two losses can be written as

c=hw
p(yale) = MLP(c)

M
LEO,6)=> > —logp(ym|zm;0,)

(12)
7} m=1
LE0,0) =Y —logp(yalc; 0, ¢) (13)
7

where 6 are the learnable parameters of the shared layers
(i.e., input representation and context encoder), ¢ are the
parameters of the tag decoder, and ¢ are the parameters of the
discriminator. At learning time, in order to encourage domain-
invariant features, we seek the parameters 6 that maximize
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the loss of the domain discriminator (by making the two
feature distributions as indistinguishable as possible), while
simultaneously seeking the parameters 6 and ¢ that minimize
the loss of the domain discriminator. In addition, we seek the
parameters ¢ that minimize the loss of the tag decoder. Thus,
the optimization problem involves a minimization with respect
to some parameters and a maximization with respect to others.
Based on this idea, we define the whole objective:

L%}dﬂ(e, ¢7 %0) = ‘C% (97 ¢) - AL"% (97 %0)

The parameter A\ controls the trade-off between the two
objectives. Then, we deliver a saddle point of E%—?” (0,90, 9)
as follows:

(14)

(0.9) = argminL5" (0, 6, )

@ = argmaxL3% (0, ¢, )
P J

15)
(16)

Note that the —\ factor in Equation (14) is very important
because the stochastic gradient descent would directly mini-
mize the domain prediction loss without such factor, resulting
in discriminative features across domains only. Following [53],
we add a special gradient reversal layer (GRL) below the
shared layer to address the minimax optimization problem.
During the forward propagation, GRL acts as an identity
transform (i.e., multiplies it by 1). During the backpropagation,
the GRL takes the gradient from the subsequent level and
changes its sign, ie., )\ﬂ% (0, ) is is effectively replaced
with f)\ﬁ%_ (0, ¢). Formally, we define the GRL as a function
Ry (x) by two two equations describing the forward- and
backpropagation behaviours:

Ri(z) =1 (17)
dR)\(ib) _
S =M (18)

where I is an identity matrix. This adversarial training strategy
will lead to the emergence of features that are domain-invariant
and discriminative at the same time.

E. Meta-Learning Strategy

As shown in Figure 2, METABDRY consists of two core
steps: a meta-training step and meta-validation step.

Meta-training (Inner Loop). In the meta-training step,
METABDRY tries to learn adaptation parameters from the
meta-training domains Dy,., resulting in a temporary model.
The parameters of the temporary model are adapted by gradi-
ent descent [27]:

bj = ¢j—1— OzV¢j71»Ct7€ (051, 0j-1) (19)
Yj = Pj—1 — avwflﬁ% (Oj-1:95-1)  20)
0; =0;1—aVe, L5(0; 1,6, 1,0;1) 2D

where j is the adaptation step in the inner loop, and « is the
learning rate of the inner optimization. At each adaptation step,
the gradients are calculated with respect to the parameters in
previous step (i.e., V¢j71,V%71,V9].71). Note that the base
model parameters 6y, ¢, @o should not be changed in the inner
loop (i.e., when updating the temporary model).
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Algorithm 1: Training and Testing METABDRY

1 Training Procedure ()
Input: D = {Dy,...,Dk}, and o, 8
2 Initialize 0, ¢, ;

3 while not converge do
4 Randomly split D = Dy, U D,y and
Dt'r‘ N Dval - @;
5 Meta-training:
6 Let ® = {907 ¢0,(p0} and 6y = {Om,em}
7 for ¢ in meta batch do // Outer loop
8 Sample a task 7; fom Dyqa;
9 for j in adaptation steps do // Inner loop
10 Sample a task 7; from Dy,;
11 Compute meta-training loss E% using Eq.
(12) and (13);
12 Compute adversarial loss ﬁ%—f“ using Eq.
(14); '
13 Compute adapted parameters with gradient
descent for 8, ¢, p: ; /7 TisVe,; 4
14 ¢j = dj—1 —aVe; LT (0j-1,0j-1);
15 P =@i-1—aVe, LT (0j-1,0j-1);
16 0; =
0j—1 — Ve, L5 (01, $j-1,j-1);
17 Compute meta-validation loss on 7;:
18 L [’v?l(gja(ij(pj);
19 Meta-validation:
20 Perform gradient step w.r.t ®:
@ — Ve X L5105, 65,05) s // Ti,Vae

21 | return Oview, Pmew

22 Testing Procedure ()
Input: Learned Oueta, PMeta, unseen domain data Dyest
23 while not end do

24 Serialize a task 7; from the hold-out domain Dicst;
25 Evaluate ngst using the model (Ometa; PMeta)s
26 | return Entity boundary detection performance

Meta-validation (Outer Loop). After meta-training,
METABDRY has already learned a temporary model
fo,6,.0,() : & — ) in the meta-training domains Di,.
The meta-validation step tries to minimize the distribution
divergence between the source domains Dy, and simulated
target domains D, using the learned temporary model. It
mimics the process of the temporary model being adapted to
unseen domains. More specifically, the outer meta-validation
loss £45%(6;,¢;,¢;) is computed on the task 7; from the
meta-validation domains D,, with adapted parameters
(0j,¢;,¢;). The base model parameters are computed by
gradient descent, in order to reduce errors on the validation
domains D,g;:

(907(250)@0) — (907(250)@0) - ﬁv00a¢0#30 Z‘C%ll(977¢7’g07)

Ti

(22)
where [ is the meta-learning rate. Note that the gradients
are computed by differentiating the loss E”Tfill(ﬁj, ®j, ;) with
respect to the parameters 6, ¢g, . Unlike the common
gradient, the update mechanism of Equation (20) involves a
gradient (i.e., the base model Vy,) through a gradient (i.e.,
the temporary model V). This process requires second order
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TABLE I
STATISTICS OF DATASETS.

# Sentences .

Datasets Tran Dev Test # Mentions
CoN 14,041 3,250 3,453 34,841
ONT 59,917 8,528 8,262 71,031
WIK 144,342 500 1,696 300,069
WNU 3,394 1,009 1,287 3,850
RIT 1,000 240 254 1,487
CAD 6,077 760 760 2,057
RE3 687 77 199 3,388
SEC 1,047 117 303 1,479

optimization partial derivatives. METABDRY explicitly learns
both the sequence labeling model and domain adaptation
during training.

Algorithm Flow. The full pseudocode for training and testing
METABDRY is given in Algorithm 1. At each iteration during
training, we randomly split D into Dy, and D,, for the
inner loop and outer loop, respectively. In the inner loop,
METABDRY takes a gradient step to get new adaptation pa-
rameters, and obtains the new meta-validation loss. In the outer
loop, METABDRY uses the validation on D,,; to differentiate
through the inner loop and update the parameters of the base
model: 6y, ¢g, po.

Our task (i.e., entity boundary detection) ignores the entity
typing, resulting in a homogeneous label space. Thus, for the
final evaluation, we directly use the meta-learned sequence
labeling model (i.e., Oprera and ¢prerg) for a given target
domain Dy, without fine-tuning.

IV. EXPERIMENTS

In this section, we first detail the experimental setups.
Then, we evaluate our proposed boundary labeling model on a
benchmark and verify the domain generalization performance
on eight datasets. Subsequently, we investigate the impact of
different model settings and parameters. Finally, we present a
case study of entity boundary detection results from different
methods.

A. Experimental Setup

1) Datasets.: We use eight popular datasets to ascertain
the effectiveness of METABDRY. CoNLLO03 (CON) is a well
known collection of Reuters newswire articles that contains
a large portion of sports news [54]. OntoNotes5.0 (ONT)
includes text from five different text genres: newswire, mag-
azine, broadcast news, broadcast conversation, web data [55].
WikiGold (WIK) is a set of Wikipedia articles [56].
WNUT2017 (WNU) is a set of noisy user-generated text
including Twitter, Reddit, YouTube comments, and StackEx-
change posts [57]. Ritterl1 (RIT) is a randomly sampled set
of tweets [58]. Cadec (CAD) is a richly annotated corpus of
medical forum posts on patient reported Adverse Drug Events
[59]. Annotations contain mentions of concepts such as drugs,
adverse effects, symptoms and diseases. Re3d (RE3) specif-
ically focuses on entity and relationship extraction relevant
for somebody operating in the role of a defence and security
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intelligence analyst [60]. Sec (SEC) is a dataset of financial
agreements made public through the U.S. Security and Ex-
change Commission (SEC) filings [61]. Because our task is
boundary detection, we ignore entity types in all datasets.
The statistics of the datasets are reported in Table I where
“Dev” stands for “development set” for model selection. In our
experiments, different datasets represent different domains.

For the final test, we perform leave-one-out experiments by
picking one domain to hold out as the target domain Dy.g;. In
each iteration of the meta-validation step, we randomly hold
one domain out from Dy, as the meta-validation domain D,,;.
As shown in Table I, D;, and D,, are constructed from
training sets of source domains, Dy.s is constructed from
test sets of target domains. The hyperparameters are tuned on
the development set of the target domain (i.e., leave-one-out
domain Dyegt).

2) Metrics: Following the previous work [38], we mea-
sure entity boundary detection using Precision, Recall, and
F1 Scores. Note that these measures are calculated under
the “exact-match” rule which means an entity is correctly
detected only if its start and end boundaries are both correctly
identified. Let g be the total number of entity mentions in the
human annotation, h be the total number of entity mentions
in the model output, and ¢ be the total number of correctly
detected entities in the model output. Then, we measure
Precision, Recall, and F1 scores for entity boundary detection
performance as follows:

2
Precision = E, Recall = E, and F1 score = = (23)
h g g

+h

3) Baseline Methods: ~We evaluate the proposed

METABDRY against the following competitors:

e AGG - It simply aggregates training data across all
source domains and no domain generalization technique
is applied during training.

o ReTrain - It is first trained on the training sets of source
domains, and then retrained on their development sets
[37].

¢ MTL - It models different domains as different tasks,
which are jointly trained in a multi-task learning manner
[17].

e DANN - It uses an unsupervised domain adaptation
approach with adversarial training [53].

o DSN - It is based on the idea of Domain Separation Net-
works, which explicitly learn to extract representations
that are partitioned into two subspaces: one that is private
to each domain (development set) and one that is shared
across domains (training sets) [62].

o« MLDG - It is a meta-learning based approach extending
MAML [26] to the domain generalization problem [41].

o AdvTrans - It is an adversarial transfer learning approach
without meta-learning [38]. The original version is for
two-domain adaptation, and we re-purpose this method
for multi-domain generalization.

4) Implementation Details: For all neural network models,
we use GloVe 300-dimensional pre-trained word embeddings?

Zhttp://nlp.stanford.edu/projects/glove/
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TABLE II
THE PERFORMANCE OF ENTITY BOUNDARY LABELING MODELS ON
ONTONOTESS.0. SIGNIFICANT IMPROVEMENT OVER BASELINES IS
MARKED WITH * ( p-VALUE < 0.05).

Methods | P(%) R(%) F1(%)
RegEx 5026 67.52 57.63
Shallow-CRF 90.75 85.84 88.23
StanfordNER 78.01 77.65 77.83
BiLSTM-MLP | 91.12 9273 91.92
BiLSTM-CRF | 91.61 92.82 9221
Ours 93.22° 94.67° 93.94"

released by Stanford, which are fine-tuned during training. The
dimension of the character-level representation is 100 and the
CNN sliding windows of filters are [2, 3, 4, 5]. The total num-
ber of CNN filters is 100. For the boundary labeling model,
the bidirectional encoder GRU each has a depth of 3 and a
hidden size 128. The decoder GRU is unidirectional in our
model and is twice the hidden size of the encoder. The inner
learning rate «, meta-learning rate $ and dropout are tuned
on the development set for each experiment. The decay rate is
0.09 and the gradient clip is 5.0. Our proposed METABDRY is
implemented with the PyTorch framework® and evaluated on
NVIDIA Tesla P100 GPUs. Note that METABDRY requires
second order optimization partial derivatives. Unfortunately,
the double backward for _cudnn_rnn_backward has not
been implemented in PyTorch (1.0 Version) so far. Thus,
we reimplement GRUs from scratch for the second order
optimization.

B. Boundary Labeling Performance

We train our boundary labeling model (see Figure 3)
on OntoNotes5.0 and compare it with five methods. RegEx
is created with regular expressions, based on word surface
patterns, e.g., letter cases. Shallow-CRF trains a conditional
random field (CRF) using the commonly used token-level fea-
tures [63]. BILSTM-MLP/CRF [64] utilizes bidirectional long
short-term memory (BiLSTM) to encode a word sequence, and
MLP (multilayer perceptron)/CRF to infer decoder tags. The
results are summarized in Table II.

First, our boundary labeling model outperforms all baseline
methods in terms of P, R and F'1 scores. More specifically,
our model outperforms RegEx, Shallow-CRF, StanfordNER,
BiLSTM-MLP, and BiLSTM-CRF by relative F1 improve-
ments of 63.01%, 6.47%, 20.07%, 2.20%, and 1.88%, respec-
tively. Our solution also provides a new perspective to model
the sequence labeling task using pointer networks instead of
the classic CRF-based approach. Second, the performance
of StanfordNER is poor. This observation coincides with
our previous claim that off-the-shelf NER systems are not
specifically designed for entity boundary detection. Off-the-
shelf tools are commonly trained on a single small dataset for
boundary detection and typing. Typically, off-the-shelf NER
systems do not work well on cross-domain datasets (e.g.,

3https://pytorch.org/, the version 1.0 is used.
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TABLE III
THE DOMAIN GENERALIZATION PERFORMANCE (F'1 SCORE) OF ENTITY BOUNDARY DETECTION. SIGNIFICANT IMPROVEMENTS OVER THE BASELINES
ARE MARKED WITH * ( p-VALUE < 0.05).

Target Domains
Methods CoN ONT WIK WNU RIT CaD  RE3 SEC AVE.
AGG 80.38 77.2 78.55 52.68 69.84 5637 3371 20.86 | 58.69
ReTrain [37] 7829 7542 7625 51.01 6834 57.09 31.65 1833 | 57.04
MTL [17] 81.92 7731 79.45 53.87 7097 5734 3274 21.79 | 59.42
DANN [53] 83.41 79.58 80.34 54.17 7145 5623 3497 2278 | 60.36
DSN [62] 82.55 7892 80.77 5293 69.03 5721 3426 21.84 | 59.68
MLDG [41] 84.94 79.32 8143 5462 71.84 58.09 35.04 2396 | 61.15
AdvTrans [38] 84.14 80.25. 82.12. 53.37 72.06 58.62 34'71, 24'34, 61.20
METABDRY (ours) | 86.02° 81.74° 83.83" 56.59° 73.81° 59.54° 36.33" 26.59" | 63.06"
S
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Fig. 4. Visualization of pointer attention weights. The identified start and end . &@ & & N
positions of entities are in blue and red, respectively. For example, given the S § S\" <
input word “or”, METABDRY judges it as the non-start (i.e., Inactive) of an &\o &

entity. Given the input word “Thirty”, the end boundary “Mars” is detected
based on the pointer attention weights.

OntoNotes5.0 in this experiment) because they do not take
into account domain generalization.

For better understanding, we visualize pointer attention
weights with an example in Figure 4. The words on the y-axis
are the input of the GRU decoder. The words on the x-axis
are the input of the GRU encoder. METABDRY detects entity
start and end boundaries in a greedy manner. For example,
for the input “30”, our approach detects the end boundary
of this entity at the position “Mars”. For a given input “or”,
our approach determines that it is not the start of an entity
mention by the sentinel word “Inactive”. Note that the middle
words of a detected entity (e.g., “Seconds” and “to” of “Thirty
Seconds to Mars”) are no longer passed into the decoder
GRU. Meanwhile, the pointers in METABDRY are backward.
This means that the weights before the current input are
zeros. Thus, the attention weights are composed of an upper
triangular matrix. Observe that the identified boundaries have
dominant attention weights, which implies that our model can
successfully learn syntactic features from sentences for entity
boundary detection.

C. Domain Generalization Performance

Table III reports the domain generalization performance of
different methods under the leave-one-out settings (see [V-Al).
We make the following observations:

Fig. 5. Impact of architectural choices.

First, our METABDRY method outperforms all baseline
methods on all domain generalization tasks in terms of
F'1 scores, demonstrating that meta-learning is effective
for augmenting model generalizability. More specifically,
METABDRY outperforms AGG, ReTrain, MTL, DANN, DSN,
MLDG and AdvTrans with relative improvements of 7.45%,
10.55%, 6.13%, 4.47%, 5.66%, 3.12% and 3.04% in terms of
the averaged F'1 scores across all domain generalization tasks.

Second, an interesting observation is that AGG, ReTrain,
MTL and DSN obtain comparable performance. This reveals
that both the naive strategies of aggregation and retraining
cannot alleviate the difference in data distributions among
multiple domains. This result also demonstrates the necessity
of addressing the domain-shift issue when multiple-domain
resources are available during training.

Third, the baseline methods using adversarial training (i.e.,
DANN and AdvTrans) and meta-learning (i.e., MLDG) outper-
form other baseline methods (AGG, ReTrain, MTL and DSN).
This indirectly demonstrates the effectiveness of adversarial
training and meta-learning strategies in domain generalization.
METABDRY seamlessly incorporates these two strategies and
significantly outperforms all baseline methods.

Fourth, named entity boundary detection on informal text
(i.e., WNU, RIT, CAD, RE3 and SEC) is much more difficult
than on formal text (i.e., CON, ONT and WIK). More specif-
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Fig. 6. The effect of adversarial training and meta-learning on the distribution of representations from BiGRU encoders.

ically, compared to the other six target domains, all methods
obtain relatively low F'1 scores on RE3 (defence and security
intelligence text) and SEC (finance text). This observation
shows that the heterogeneous domain generalization is a very
challenging task when there is a large distribution gap between
the source and target domains. However, METABDRY is still
more effective than the baselines in reducing the distribution
divergence. We attribute this to the fact that METABDRY
explicitly simulates the domain shift during training so that
it is conducive to generalize to a novel target domain.

D. Further Analysis

In this subsection, we first study various architectural
choices on model performance and the impact of key pa-
rameter settings. Then we present a qualitative analysis to
intuitively show results from different methods.

1) Ablation Study: Figure S5 reports an ablation analysis
on the test set of CON. The full model is our proposed
METABDRY. There are five variations: (1) we remove the
CNN layer (w/o CNN); (2) remove the pointer attention
mechanism and use the last hidden state of the encoder
GRU (w/o pointer attention); (3) use unidirectional GRUSs
instead of bidirectional GRUs (unidirectional RNN); (4) re-
move the meta-learning strategy (w/o meta-learning); (5) re-
move the adversarial strategy (w/o adversarial). The ablation
study clearly showcases the importance of each component
of METABDRY. First, we observe that the character-level
representations extracted from CNNs play an important role
in domain generalization for entity boundary detection. This
is because that the character-level representations can provide
additional information to handle out-of-vocabulary (OOV)
words in domain generalization where OOV is an extremely
common phenomenon. Second, the pointer and bidirectional
RNN mechanisms also significantly contribute to identify
entity boundaries. This is because they provide more richer
context information for seasoning boundaries. Third, the ad-
versarial training and meta-learning strategies have positive
effects on domain generalization for entity boundary detection.

We claim that METABDRY incorporates adversarial training
and meta-learning strategies to encourage a domain general-
izer. Furthermore, we visualize the effect of adversarial train-
ing and meta-learning. We randomly sample 2000 training in-

F1 Score (%)

Fig. 7. Impact of parameter \.

stances for each domain (CoNLL03, WNUT17 and Cadec) and
visualize the internal representations (extracted from BiGRU
encoders) by t-SNE [65]. Figure 6(a) and 6(b) illustrate the
distributions of the internal representations without adversarial
training and meta-learning, respectively. Figure 6(c) provides
a visualization of our full architecture (METABDRY). The
domain discrepancies are large among these three domains
because CoNLLO3 is from the text genre of the newswire,
WNUTI17 is from the social media and Cadec is from the
medical text. We observe that the three clusters in Figure
6(a) and 6(b) are much more discriminative than Figure 6(c).
Our METABDRY approach possessing adversarial training
and meta-learning mechanisms, brings the three distributions
much closer and more indistinguishable. This ablation study
visually demonstrates the effectiveness of our model design
for encouraging domain-invariant representations.

2) Parameter Sensitivity Study: As shown in Equation (14),
the parameter A is an important parameter to control the two
objectives: the domain discriminator loss and tag decoder loss.
Figure 7 shows an empirical study on parameter sensitivity
for \. We vary the A as 0.5, 0.6, 0.7, 0.8 and 0.9. Figure 7
plots the F1 scores on the test set of CON across different
values of \. We observe that A = 0.7 yields the best empirical
performance. This parameter sensitivity analysis shows that
we need to balance the two learning objectives with optimal
A for better domain generalization.
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TABLE IV
CASE STUDY OF ENTITY BOUNDARY DETECTION RESULTS FROM DIFFERENT METHODS. THE GROUND-TRUTH ENTITIES IN ANNOTATED CORPORA ARE
UNDERLINED. THE WRONGLY DETECTED ENTITIES ARE HIGHLIGHTED IN RED.

Case 1 from CON: Hosts UAE play Kuwait and South Korea | Case 2 from WNU: Why were Olive and Emma’s powers
take on Indonesia on Saturday in Group A matches. changed in Miss Peregrine’s Home for Peculiar Children?
AGG Kuwait, South Korea, Indonesia Olive, Emma
MTL UAE, South Korea, Indonesia Olive, Emma, Peregrine
MLDG Kuwait, South Korea, Indonesia, Group Olive, Emma, Miss Peregrine’s Home
AdvTrans Kuwait, South Korea, Indonesia, Group A Olive, Emma, Miss Peregrine’s Home, Peculiar Children
METABDRY | UAE, Kuwait, South Korea, Indonesia Olive, Emma, Miss Peregrine’s Home for Peculiar Children
Case 3 from RIT: OMG! Miley Cyrus Has A 14-Year-Old | Case 4 from CAD: Family history of Heart desease,
Stalker!: First Paris Hilton, now Miley Cyrus! diabetes, and high blood pressure
AGG Miley Cyrus, Miley Cyrus Heart
MTL Miley Cyrus, 14-Year-Old Stalker, Miley Cyrus Heart
MLDG Miley Cyrus, 14-Year-Old Stalker, Paris Hilton, Miley Cyrus | Family history of Heart
AdvTrans Miley Cyrus, First Paris Hilton, Miley Cyrus Heart desease
METABDRY | Miley Cyrus, Paris Hilton, Miley Cyrus Heart desease, high blood pressure
Case 5 from RE3: Designs were completed by | Case 6 from SEC: 1] - Union Bank of California NA
the British firm Voganlei and Coode. and Crocs Inc. [UNION BANK OF CALIFORNIA LOGO]
AMENDMENT NO.
AGG British California, CALIFORNIA
MTL British, Voganlei, Coode California, Crocs Inc., CALIFORNIA
MLDG British, Voganlei and Coode California, Crocs Inc., CALIFORNIA
AdvTrans British, Voganlei and Coode Union Bank of California, Crocs Inc., UNION BANK OF
CALIFORNIA LOGO
METABDRY | British firm Voganlei and Coode Union Bank of California, UNION BANK OF CALIFOR-
NIA LOGO

3) Time Consuming Analysis: As shown in Algorithm 1,
METABDRY consists of two core phases: training and testing
phases. Now we empirically investigate the time consumption
of these two phases on one single GPU. In particular, the
outer step size is set to 8 and the inner step size is set to 1.
During training, two samples per each domain are sampled to
construct a mini-batch, resulting in the batch size of 12. Our
experimental study shows that each inner loop (i.e., “j” loop)
needs 0.33 second, and the outer loops (i.e., “¢” loop) totally
need 2.64 seconds. However, each iteration (i.e., “while”
loop) during training takes 6.2 seconds. Thus, the main time
consumption (i.e., (6.2 — 2.64) seconds) lies in second order
optimization partial derivatives (i.e., line 18 in Algorithm 1)
and the parameters update (i.e., line 20 in Algorithm 1).

For the final test, the learned parameters (i.e., Opretq and
Pmeta) are fixed and directly evaluated on target domains.
The batch size of test is also set to 12. Each iteration with
12 samples during testing takes 0.064 second, which is much
faster than training. Note that the time consumption is linearly
proportional to the data size for both training and testing
phases. For example, METABDRY totally takes 18.432 seconds
when testing on CON domain (3454 samples).

4) Qualitative Study: For intuitive comparisons, we con-
duct a qualitative study to investigate the prediction results
from different models. We only show six cases from CON,
WNU, RIT, CAD, RE3, and SEC across five methods (AGG,
MTL, MLDG, AdvTrans and METABDRY) in Table IV,
because the text genres of ONT, WIK are similar to CON
and the performance of ReTrain is comparable to AGG, the
performance of DSN and MLDG is comparable to AdvTrans.
For the case 1 - 3, only METABDRY can correctly detect all

entity boundaries while other baseline methods cannot. For
the case 4 - 6, all methods (including our METABDRY) have
wrongly detected results.

From Table IV, we have the following observations: First,
compared with the baseline methods, METABDRY misses
fewer entities. Totally, METABDRY misses one entity in the
case 4 (“diabetes”). In particular, the errors from the AGG
and MTL methods mainly lie in missing some entities. For
example, the AGG method misses one entity in the case 1,
one entity in the case 2, one entity in the case 3 and two
entities in the case 4.

Second, for all methods, the case capitalization may mis-
lead boundary detection. For example, “Group A” and “First
Paris Hilton” are wrongly detected by AdvTrans. “Group”,
“14-Year-Old Stalker” and “Family history of Heart” are
wrongly detected by MLDG. “UNION BANK OF CALIFOR-
NIA LOGO” is wrongly detected by METABDRY. Usually, the
formal text (e.g., CON and WIK) has strict criteria for case
sensitivity while the informal text has not. For example, the
case 4 from social media, and case 6 from the finance text are
both written with capital letters. Thus, domain generalization
for informal text is more challenging because the informal text
is complicated and noisy. However, METABDRY significantly
outperforms the baselines. For example, METABDRY correctly
detects all entities in the cases 2 and 3 both from social media.

Third, METABDRY can detect boundaries of long entities
while the baseline methods break a long entity into parts
and lose the entity integrity. For example, none of baseline
methods can correctly detect the long entity “Miss Peregrine’s
home for Peculiar Children” in the case 2 while our approach
METABDRY can perfectly identify boundaries. We attribute
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this to the fact that our approach is more general and robust
to reduce the domain discrepancy.

Fourth, the annotation criteria among different domains is
the main issue for domain generalization. There may be an
annotation conflict for the same type of entities. A typical
example is that whether the definite article “the” should be
included in entities. For example, “the British firm Voganlei
and Coode” from the case 5 include the definite article while
most of the source domains do not include it. In the case 6,
“Union Bank of California” is annotated with two different
entities: “Union Bank” and “California”. This annotation also
makes unsupervised domain generalization more challenging.
An effective approach to alleviating this issue is to fine-tune
METABDRY with a small amount of annotated target domain
data. In this work, we assume no access to any target domain
information and we leave the supervised domain generalization
problem as a future work. Although METABDRY is designed
for domain generalization, we do not claim that it can handle
all cases in the real world.

V. CONCLUSION

In this paper, we studied a very ambitious problem in NLP,
i.e., the task of named entity boundary detection under domain
generalization settings. We first proposed a novel boundary
labeling model, utilizing pointer networks to effectively ad-
dress the issue of boundary tag sparsity and the issue of
variable size output vocabulary. We then proposed a domain
generalization approach for named entity boundary detection,
which incorporates adversarial learning and meta-learning to
encourage a general and robust model. Our work is the first at-
tempt in adapting meta-learning to aggregate meta-knowledge
from multiple resource domains for sequence labeling. We first
conducted experiments on a benchmark dataset to evaluate the
effectiveness of our novel boundary labeling model. We then
conducted extensive experiments on eight popular datasets,
verifying the correctness and effectiveness of our proposed
approach.

We believe that named entity boundary detection is a
fundamental problem in NLP. Our robust boundary detection
model will benefit a wide variety of downstream applications.
In the future, we would like to explore the applications of the
detected entity mentions in entity linking, fine-grained entity
typing, sentiment analysis, question answering and text sum-
marization. In addition, although this study assumes no access
to any target information, our meta-learned domain generalizer
can be further fine-tuned (either fast weights or base weights)
in a supervised manner with few target samples. We leave
this as the future work for performance improvements. Lastly,
we are also interested in boosting our approach with recent
pre-trained language models such as ELMo and BERT.
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