
To Do or Not To Do: Distill Crowdsourced Negative
Caveats to Augment API Documentation

Jing Li
School of Computer Science and Engineering, Nanyang Technological University, Singapore.
E-mail: jli030@e.ntu.edu.sg

Aixin Sun
School of Computer Science and Engineering, Nanyang Technological University, Singapore.
E-mail: axsun@ntu.edu.sg

Zhenchang Xing
College of Engineering and Computer Science, Australian National University, Australia.
E-mail: zhenchang.xing@anu.edu.au

Negative caveats of application programming interfaces
(APIs) are about “how not to use an API,” which are
often absent from the official API documentation. When
these caveats are overlooked, programming errors may
emerge from misusing APIs, leading to heavy discus-
sions on Q&A websites like Stack Overflow. If the over-
looked caveats could be mined from these discussions,
they would be beneficial for programmers to avoid mis-
use of APIs. However, it is challenging because the dis-
cussions are informal, redundant, and diverse. For this,
for example, we propose DISCA, a novel approach for
automatically DIStilling desirable API negative CAveats
from unstructured Q&A discussions. Through sentence
selection and prominent term clustering, DISCA ensures
that distilled caveats are context-independent, promi-
nent, semantically diverse, and nonredundant. Quantita-
tive evaluation in our experiments shows that the
proposed DISCA significantly outperforms four text-
summarization techniques. We also show that the dis-
tilled API negative caveats could greatly augment API
documentation through qualitative analysis.

Introduction

Application programming interfaces (APIs) are founda-

tions of software development. To program with an API,

developers need to know not only “how to use the API,” but

also “how not to use the API.” Table 1 lists seven examples

of “how not to use an API” extracted from Stack Overflow,1

a Q&A website for topics in programming. We refer to such

“how not to use an API” directives as API negative caveats.

API documentation is an important resource for develop-

ers to learn unfamiliar APIs (Kramer, 1999; Robillard &

Deline, 2011; Dagenais & Robillard, 2012; Stylos, Faulring,

Yang, & Myers, 2009). By providing important information

about functionality, parameters, and use scenarios of an API,

API documentation often does a good job at explaining

“how to use an API” (Robillard & Deline, 2011; Subrama-

nian, Inozemtseva, & Holmes, 2014). More often than not,

API documentation does not mention any API negative cav-

eats. Even when negative caveats are mentioned, they are

often buried in the verbose descriptions of the API and can

be barely noticed by developers.

Not mentioning API negative caveats is not always

because API designers are reluctant to document negative

caveats. We will use the examples in Table 1 to further illus-

trate this point. First, an API negative caveat is sometimes

related to a broader context in which an API is used. For

example, java.awt.event.ActionListener is often imple-

mented as an inner class. According to Java language speci-

fication, an inner class cannot access nonfinal variables from

the scope that contains the inner class. Second, an API nega-

tive caveat may be rooted in the API’s design. For example,

javax.swing.JTextArea is designed to display plain text

only; as such, it does not support styled text. Third, API neg-

ative caveats may also emerge from practical use scenarios,

which API designers are unable to foresee. As an example,

Received July 28, 2017; revised April 12, 2018; accepted April 29,

2018

VC 2018 ASIS&T � Published online Month 0, 2018 in Wiley Online

Library (wileyonlinelibrary.com). DOI: 10.1002/asi.24067 1https://stackoverflow.com/

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 00(00):00–00, 2018

© 2018 ASIS&T • Published online August 9, 2018 in Wiley Online
Library (wileyonlinelibrary.com). DOI: 10.1002/asi.24067

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY, 69(12):1460–1475, 2018



it is not expected that javax.swing.text.html.ListView to be

used inside a ScrollView.

Nevertheless, once an API negative caveat has slipped a

programmer’s attention, it is very likely to result in unex-

pected programming errors. An effective way of seeking a

solution is to post a question on Stack Overflow, and wait

for suggestions from other developers. Often, the answers

explicitly point out the overlooked API negative caveats and

suggest ways to avoid such errors, as shown in Table 1.

Such Q&A discussions effectively document negative

experiences emerging from overlooking API negative cav-

eats in practice. They are also referred to as crowd documen-

tation (Parnin, Treude, Grammel, & Storey, 2012), which

generates a rich source of content that complements the offi-

cial API documentation. If we could extract such crowd-

sourced API negative caveats like those in Table 1, we may

highlight the hard-to-notice negative caveats in API docu-

mentation or augment the API documentation with the miss-

ing negative caveats. Such augmentation would raise

developer’s caution to avoid misuse of APIs, or to help them

fix errors caused by overlooking API negative caveats.

However, these API negative caveats, present in crowd-

sourced Q&A discussions, are informal, redundant, and are

often related to different aspects of API use. How to effec-

tively distill API negative caveats from unstructured Q&A

discussions is a challenging task.

For this, for example, we present DISCA, an approach for

automatically distilling API negative caveats from large-

scale unstructured Q&A discussions. To the best of our

knowledge, our work is the first attempt to tackle the prob-

lem of negative uses of APIs. We formulate the problem as

a text-summarization task and identify four desirable proper-

ties for the distilled API negative caveats: context-

independence, prominence, semantic diversity, and semantic

nonredundancy.

Given a set of programming-related sentences extracted

from Stack Overflow discussions, DISCA first selects a set of

candidate sentences, that is, sentences mentioning a specific

API with negative expressions. Then, DISCA selects context-

independent sentences that identify issues about an API use

without referring to the discussion contexts. Next, DISCA

selects semantically diverse and nonredundant sentences

that cover prominent domain-specific terms through a com-

bination of techniques including relative entropy, term co-

occurrence analysis, and set cover.

We conduct both quantitative and qualitative evaluations

to demonstrate the effectiveness of DISCA. For quantitative

evaluation, we aim to answer the following research ques-

tions: RQ1: How much improvement can the DISCA

approach achieve over baseline methods? and RQ2: How

effective is the proposed DISCA approach in guaranteeing

diversity over baseline methods? For RQ1, we compare the

performance of DISCA against four text-summarization tech-

niques: eigenvector centrality of sentence graph (LexRank;

Erkan & Radev, 2004), topic modeling (LDA, Blei, Ng, &

Jordan, 2003), sentence clustering (KM MacQueen et al.,

1967), and sentence diversification (MMR, Goldstein, Kant-

rowitz, Mittal, & Carbonell, 1999). We evaluate the perfor-

mance of DISCA and the baseline methods with two

commonly used metrics: Recall-Oriented Understudy for

Gisting Evaluation (ROUGE) and Normalized Discounted

Cumulative Gain (nDCG). Our results show that DISCA out-

performs the four baselines by 10.60% to 22.47% for

ROUGE and 17.63% to 42.87% for nDCG, respectively.

For RQ2, we conduct an intermethod comparison, which

compares the relative performance between one method and

the other four methods using the Jackknifing procedure (Lin,

2004). The results of intermethod comparison show that the

summaries of DISCA are more diverse than the baseline

methods.

For qualitative evaluation, we aim to answer the follow-

ing research questions: RQ3: To what extent does the DISCA

approach miss the API negative caveats stated in official

API documentation? RQ4: To what extent does the DISCA

approach augment the official API documentation? and

RQ5: How important are the distilled API negative caveats

by the DISCA approach? For RQ3 and RQ4, we compare the

negative caveats that are documented in the API documenta-

tion of 10 Java API types and the ones mined by DISCA. The

results show that official API documents mention only six

negative caveats, while DISCA distills 164 from Stack Over-

flow. These 164 negative caveats cover four out of the six

negative caveats mentioned in API documentation (that is,

two negative caveats missed). More important, DISCA greatly

TABLE 1. Examples of API negative caveats extracted from Stack Overflow.

API Types API negative caveats Post ID

java.util.HashMap Don’t use a HashMap if you are going to have multiple threads, use

a ConcurrentHashMap instead.

15389917

HashMap doesn’t guarantee the order in which elements are returned. 10372667

javax.swing.JTextArea The JTextArea will not scroll down with the text. 630030

JTextArea is not a component designed for styled text. 9097995

java.awt.event.ActionListener Inner classes, such as your ActionListener, cannot access nonfinal variables

from the scope that contains it.

30689818

Don’t use an ActionListener to check when the button is selected. 19532759

javax.swing.text.html.ListView You cannot use a ListView inside a ScrollView (any two views that

have same orientation scrolling).

8551849

2 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1461



augments the official API documents of the 10 Java APIs

with 146 correctly identified negative caveats out of 164. In

order to answer RQ5, we conduct a case study to present the

distilled API negative caveats of four Java API types. The

results show that DISCA helps to reveal hard-to-notice API

negative caveats. These distilled negative caveats are diffi-

cult to document by API designers and are hard to foresee,

because they mainly emerge from misuse in practice.

Related Work

Given the commonality of crowd-generated content, our

related work section is divided into three parts: works on

crowdsourced knowledge in software development, App

review opinion mining, and automatic text summarization.

Crowdsourced Knowledge in Software Development

Several studies have contributed effort on aiding develop-

ers in software development using crowdsourced knowl-

edge. The crowdsourced knowledge was generally derived

from two types of sources: code snippet and textual content.

For crowdsourced code snippets, there are studies (Sahave-

chaphan & Claypool, 2006; Thummalapenta & Xie, 2007)

investigating the problem of how to integrate code snippets

in Integrated Development Environment (IDE) to recom-

mend code examples during software development. For

example, XSnippet (Sahavechaphan & Claypool, 2006), a

context-sensitive code assistant framework, allows develop-

ers to query a sample repository for code snippets that are

relevant to the programming task at hand. Other studies

(Brandt, Dontcheva, Weskamp, & Klemmer, 2010; Kim,

Lee, Hwang, & Kim, 2009; Zagalsky, Barzilay, & Yehudai,

2012) investigated the problem of how to build a new code

search by utilizing source snippets on the web. In addition, a

few studies focused on recovering the traceability of various

software artifacts, such as the link between source code snip-

pets and official API documentation (Kim et al., 2009; Sub-

ramanian et al., 2014) and the link between source code

snippets and their learning resources (Dagenais & Robillard,

2012). Such existing studies on crowdsourced code snippet

are based on code search engines and code static analysis. In

contrast, DISCA is designed to distill negative caveats that

are expressed in natural language.

Another type of crowdsourced knowledge is textual con-

tent. Many studies developed tools to integrate Q&A resour-

ces into the IDE, such as Seahawk (Bacchelli, Ponzanelli, &

Lanza, 2012), and Prompter (Ponzanelli, Bacchelli, &

Lanza, 2013; Ponzanelli, Bavota, Di Penta, Oliveto, &

Lanza, 2014). Studies also developed question answering

systems to answer programming questions by leveraging

official content and social context of software documenta-

tion (Li, Xing, Ye, & Zhao, 2016; Li, Sun, & Xing, 2018;

Li, Xing, & Kabir, 2018). In addition, researchers have con-

tributed their efforts for program comprehension by using

software textual content (Ponzanelli et al., 2013; Treude,

Barzilay, & Storey, 2011). These existing studies link or rec-

ommend crowdsourced knowledge from the point view of

“how to use an API” at the post level or document level. In

contrast, our work distills insights at the fine-grained sen-

tence level from the point view of “how not to use an API.”

Recently, Treude and Robillard (2016) presented SISE,

which automatically augments API documentation with

insight sentences from Stack Overflow. This work is the

closest to our work. However, in Treude and Robillard

(2016), the authors trained a binary classifier with hand-

coded features in a supervised manner and the solution does

not consider the factors of redundancy, diversity, and nega-

tive expression in the summarization algorithm. In short,

existing studies focus on general relevance of the recom-

mended knowledge, while our work specifically focuses on

negative insights related to API uses. To the best of our

knowledge, no prior work has been done on negative uses of

APIs.

App Review Opinion Mining

Our work summarizes the crowd-generated sentences

with respect to APIs. It is similar to crowd-generated

reviews for Apps. Miao, Li, and Zeng (2010) exploited the

domain knowledge to assist product feature extraction and

sentiment orientation identification from unstructured

reviews. Wisniewski, Xu, Lipford, and Bello-Ogunu (2015)

examined two prominent Facebook features that promote

confidant disclosures: tagging and third-party applications.

The results illustrate the complexity of the trade-off between

privacy concerns, engaging with friends through tagging and

Apps, and Facebook use. Gu and Kim (2015) presented

SURMiner, which classifies reviews into five categories

(that is, aspect evaluation, bug reports, feature requests,

praise, and others) and extract aspects in sentences using a

pattern-based parser. Chen, Lin, Hoi, Xiao, and Zhang

(2014) developed AR-Miner, which helps App developers

extract the most valuable information from raw user review

data. Vu, Nguyen, Pham, and Nguyen (2015) proposed

MARK, a keyword-based framework for semiautomated

review summarization and visualization.

These existing works focused on opinion-aspect phrase

extraction (Vu et al., 2016) and conducted sentiment analy-

sis of opinion words (Gu & Kim, 2015; Serva, Senzer, Pol-

lock, & Vijay-Shanker, 2015). Although API negative

caveats are expressed in negative sentences, they state a neu-

tral fact about API use rather than a polarity opinion. Thus,

sentiment analysis followed by aspect extraction in the

above work is generally not applicable for distilling API

negative caveats from crowd-generated discussions.

Automatic Text Summarization

In recent years, there has been an explosion in the amount

of text data, which need to be effectively summarized to be

useful. Those existing approaches in general fall into two

categories: extractive summarization and abstractive sum-

marization. Extractive summarization methods select a few

relevant sentences from the original document as a sum-

mary. Summary sentence selection therefore is a critical step

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi

31462 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018
DOI: 10.1002/asi



in the extractive summarization process. Most previous shal-

low models estimate the salience of a sentence using prede-

fined features, such as lexical chains (Barzilay & Elhadad,

1999), word co-occurrence (Matsuo & Ishizuka, 2004), and

centrality (Erkan & Radev, 2004). Recently, many advanced

models were developed to learn deep semantic features. For

example, Cao et al. (2015) developed PriorSum, which

applies enhanced convolutional neural networks to capture

the summary prior features derived from length-variable

phrases. The learned prior features are concatenated with

document-dependent features for sentence ranking. Ren

et al. (2017) proposed a neural extractive model, named con-

textual relation-based summarization, to take advantage of

contextual relations among sentences so as to improve the

performance of sentence regression.

Abstractive summarization methods produce a new con-

cise text that includes words and phrases different from the

ones in the source document. Structure-based approaches

have been studied extensively, such as rule-based (Genest &

Lapalme, 2012), ontology-based (Lee, Jian, & Huang,

2005), and template-based (Harabagiu & Lacatusu, 2002)

approaches. Recently, semantic-based approaches were

widely investigated. Bing et al. (2015) proposed an abstrac-

tive multidocument summarization framework that can con-

struct new sentences by exploring more fine-grained

syntactic units than sentences. Nallapati, Zhou, Santos,

G€ulçehre, and Xiang (2016) proposed an abstractive text

summarization model using attentional encoder-decoder

recurrent neural networks. Paulus, Xiong, and Socher (2017)

proposed a neural network model with a novel intra-

attention that attends over the input and continuously gener-

ated output separately. This model combines standard super-

vised word prediction and reinforcement learning for

abstractive summarization. Tan, Wan, and Xiao (2017) pro-

posed a graph-based attention mechanism in the sequence-

to-sequence framework. This framework introduced a new

hierarchical decoding algorithm with a reference mechanism

to generate the abstractive summaries.

Although these existing studies leverage advanced neuro-

linguistic programming (NLP) techniques to generate sum-

maries, they require a great amount of training data. For this

research problem, for example, there are no training data

available. The advantage of our framework is that it is an

unsupervised and a data-driven method.

Problem Definition

The raw input to our approach is a set of programming-

related sentences extracted from online discussion. Such

sentences can be easily obtained from Q&A websites such

as Stack Overflow. Given an API type, for example, a class

or an interface declared in Java SDK like java.util.HashMap,

our task is to distill a small set of sentences as negative cav-

eats related to the concerned API. The problem naturally

well aligns with the objectives of an extractive text summa-

rization task, in which the aim is to select salient information

from a collection of documents. Thus, we formulate the

problem of distilling desirable API negative caveats as a

text-summarization task, through the following three

definitions.

Definition 1 (candidate sentences)

Let Sraw be a set of programming-related sentences from

online discussion, and let x be an API type. A candidate sen-

tence for API type x is a sentence s 2 Sraw that mentions

API x and contains negative expression(s). We denote the

set of candidate sentences for API x as Sx.

Definition 2 (candidate API negative caveats)

Candidate API negative caveats is a set of sentences,

denoted by C andx � Sx, after removing context-dependent

sentences from candidate sentences.

Definition 3 (desirable API negative caveats)

Given an API type x, a set of desirable API negative cav-

eats is a small subset of sentences, denoted by Ax � C andx.

Ax represents the semantically diverse and nonredundant

sentences that cover the most prominent domain-specific

terms related to the use issues of API type x.

Next, we detail the four desired properties: context-

independence, prominence, semantic diversity, and

nonredundancy.

Context-Independence

Sentences in a discussion often reference other part(s) of

the discussion; for example, “The following for example

addresses this question in some detail about HashMap.” We

consider such sentences context-dependent. The distilled

API negative caveats should be context-independent, so that

programmers know a negative caveat without having to refer

to the original discussion. Having said that, the property of

context-independence does not mean that programmers do

not require any additional knowledge about the API to fully

understand its negative caveats.

Prominence

Discussion about an API may cover many different

aspects, not limited to negative caveats. Consider two sen-

tences “HashMap essentially has O(1) performance” and

“HashMap is not synchronized.” The first sentence is about

time complexity, while the second sentence is our main

focus. More specifically, an API negative caveat is usually

concerned about some domain-specific terms related to the

API use, for instance, multi-thread, synchronization, thread-
safe, sort for java.util.HashMap. Identifying such prominent

domain-specific terms is crucial for important API use

issues.

Semantic Diversity

An API type often has negative caveats related to differ-

ent ways of using the API. For example, java.util.HashMap

4 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1463



does not support multi-thread and does not guarantee ele-

ment order. The number of sentences with different aspects

often varies greatly in discussion. This calls for a proper

way of handling data imbalance to avoid getting sentences

that are all for one aspect of an API type. Distilling semanti-

cally diverse sentences reveals a more complete picture of

an API’s negative caveats.

Semantic Nonredundancy

In a large volume of informal discussion, the same API

negative caveat may be mentioned many times but in differ-

ent wording. “A HashMap does not maintain an order” and

“This is the property of HashMap where elements are not

iterated in the same order in which they were inserted”

express similar meanings but have low lexical similarity. In

such cases, we would like to select sentences that convey

richer information about the API use; for example, the sec-

ond sentence in this example. At the same time, we should

avoid selecting other sentences that are semantically

redundant.

The Disca Approach

To solve the text-summarization problem as defined ear-

lier, we propose DISCA (for DIStilling crowdsourced API

negative CAveats), as shown in Figure 1.

Input Data

The input data to DISCA include: a set of APIs identified

by their full qualified names and a set of sentences from

crowdsourced discussions. In this work, we focus on classes

and interfaces defined in Java SDK as the API types of inter-

est.2 Sentences are extracted from Stack Overflow, consider-

ing its popularity among programmers and the volume of

the data. More specifically, sentences are extracted for Stack

Overflow posts that are tagged with Java. The sentences are

cleaned as in many other studies (Ponzetto & Strube, 2007;

Robillard & Chhetri, 2015). We preserve the textual content

by removing HTML tags, and we remove long code snippets

enclosed in <pre >< code > but keep short code elements

in <code >. To help determine the quality of the sentences,

we attach post votes to sentences based on the number of

votes received by its original post. Voting is a function

offered by Stack Overflow where the community users

could up- and down-vote for an answer based on its quality.

The post votes in this study are the sum of up-votes and

down-votes. Higher post votes mean higher quality.

Based on our observations on Stack Overflow, we

remove three types of sentences that are unlikely to discuss

API negative caveats. First, a discussion thread consists of a

question and several answers. The sentences from question

are removed, for example “ListView adapter with HashMap

isn’t displaying correctly,” because these sentences are more

likely to discuss programming problems rather than the

cause of the problems. Our approach only considers the sen-

tences from answers. Second, the interrogative sentences in

answers are removed, for example “Have you overridden

the keySet() method in your HashMap?”; these sentences

pose questions rather than give solutions. Third, we remove

opinion-based sentences with subjective opinions in

answers, such as “I’m not sure. . .,” “I do not think. . .,” etc.

Selecting Candidate Sentences

Given an API type and a set of sentences, the first step of

our approach is to select a set of negative sentences that

mention the API type. The selected sentences are treated as

candidate sentences from which API negative caveats will

be distilled.

Selecting sentences that mention an API. Because we

want to distill API negative caveats of an API, the candidate

sentences should mention the given API. This task is often

referred to as named entity recognition (Tjong, Kim, Sang,

& De Meulder, 2003) and entity linking (Shen, Wang, &

Han, 2015). As entity recognition and linking are not the

key focus of this work, we adopt a name-matching strategy

to select sentences that mention a given API. More specifi-

cally, we use a software-specific tokenizer (Ye, Xing, Foo,

Ang, et al., 2016) to tokenize the sentences. This tokenizer

preserves the integrity of code-like tokens like java.util.-

HashMap and the sentence structure. If a token in a sentence

matches the full or partial name of an API, the sentence is

considered mentioning the API. Although this strategy is

simple, it has shown effectiveness (precision 0.92 and recall

0.97) in several studies (Treude & Robillard, 2016; Ye,

Xing, Foo, Li, & Kapre, 2016; Bacchelli, Cleve, Lanza, &

Mocci, 2011; Rahman, Roy, & Lo, 2016) for recognizing

mentions of APIs with distinct orthographic features.

When selecting candidate sentences, variations of API

mentions have to be taken into account. Informal discussions

FIG. 1. Overview of the DISCA framework. The output of each step is stated on the corresponding edge.

2https://docs.oracle.com/javase/8/docs/api/overview-summary.html

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi

51464 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018
DOI: 10.1002/asi



on social platforms (for example, Stack Overflow) are con-

tributed by millions of users with diverse technical and lin-

guistic backgrounds (Ye, Xing, Foo, Li, & Kapre, 2016;

Chen, Xing, & Wang, 2017). Such informal discussions are

full of misspellings and synonyms (Beyer & Pinzger, 2016;

Ye, Xing, Foo, Li, & Kapre, 2016; Chen, Xing, & Wang,

2017). Consequently, the same API is often mentioned in

many different forms intentionally or accidentally. For

example, the mentions of “HashMap” include “hash map,”

“hashmaps,” and “hash-map.” We resort to the software-

specific synonym thesaurus (C. Chen et al., 2017) to match

API-mention variations. This synonym thesaurus documents

commonly seen misspellings and synonyms mined from

Stack Overflow.

Selecting sentences with negative expressions. API nega-

tive caveats are usually expressed in negative sentences, that

is, sentences containing negative expressions. To this end,

we use a dependency parse tree to detect negative sentences.

The dependency parse tree provides a representation of

grammatical relations between words in a sentence.3 It is a

directed graph where nodes represent words and edges rep-

resent syntactic roles, for example, nsubj: nominal subject,

aux: auxiliary, det: determiner, etc. Among these syntactic

roles, we can use negation modifier (that is, neg) to detect

negative expressions. Figure 2 illustrates three examples

dependency parse trees produced by Stanford Parser.4 Syn-

tactic roles of negation, that is, neg(define, n’t), neg(use,
n’t), and neg(have, not) can be detected from these two

examples (highlighted in orange in Figure 2).

To ensure the negative expressions are on APIs, we select

only negative sentences whose subject or object is a given

API. For example, both sentences “JSONObject does not

have too much additional overhead on top of a HashMap”

and “HashMap doesn’t define the order of iteration over the

elements” are negative sentences and both mention Hash-

Map. Only the second sentence is selected as a candidate

sentence for HashMap because the negative expression is on

the API. More specifically, a given API must exist in nsubj
or dobj syntactic role in a sentence, as highlighted in blue in

Figure 2.

Filtering Out Context-Dependent Sentences

Context-dependent sentences are less meaningful without

referring to the original discussion where the sentences

appear. We remove context-dependent sentences from the

candidate sentences, based on a set of predefined sentence

patterns.5 The patterns are defined from our observation

made on the data. The first category of patterns removes

sentences that reference code snippets in the discussion,

such as “An equivalently synchronized HashMap can be

obtained by. . . some code. . ..” The second category removes

sentences that reference to demonstrative pronoun (for

example, “do this,” “like this,” “this won’t,” etc.); for exam-

ple, “If you are trying to do this in a single thread, I would

recommend HashMap.” The third category removes senten-

ces that reference another sentence in the discussion (for

example, “see the next step,” “the following,” etc.); for

example, “The following for example addresses this ques-

tion in some detail: HashMap requires a better hashCode().”

We refer to the rest of context-independent sentences as can-

didate API negative caveats, denoted by Candx.

Identifying Prominent Domain-Specific Terms

An API negative caveat is usually concerned with

domain-specific terms related to the particular API use.

Identifying prominent terms in candidate API negative cav-

eats helps to distill frequently overlooked but important API

use issues.

Inspired by Park, Patwardhan, Visweswariah, and Gates

(2008) and C. Chen et al. (2017), we identify prominent

terms by contrasting term frequency of a term in candidate

API negative caveats and its frequency in background cor-

pus. Recall that Candx represents the set of candidate API

negative caveats for API type x. For the sentences in Candx,

we build a term (unigram) vocabulary Vx after removing

stop words and performing word stemming. For a term

t 2 Vx, we use relative entropy to weight its prominence:

wðtÞ5pðtÞlog
pðtÞ
qðtÞ, where p(t) is the probability of observing

t in Candx and q(t) is probability of observing t in all Stack

Overflow posts that are tagged with the corresponding pro-

gramming language, that is, Java in our setting. Based on

the term weight, we select the top-k (k 5 100 in this work)

FIG. 2. Three examples of dependency parsing for sentences: “HashMap doesn’t define the order of iteration over the elements,” “Don’t use a Hash-
Map with multiple threads,” and “JSONObject does not have too much additional overhead on top of a HashMap.” Note that the two examples on the

left-hand side are selected as candidate sentences in this study. [Color figure can be viewed at wileyonlinelibrary.com]

3http://universaldependencies.org/en/dep/all.html
4http://nlp.stanford.edu/software/lex-parser.html

5See the full list of defined patterns at http://128.199.241.136/disca/

appendix

6 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1465



ranked terms as the prominent domain-specific terms in can-

didate API negative caveats. Note that the setting of k may

not significantly affect the results, as the prominent terms

will be grouped to semantic aspects; to be discussed next.

Discovering Semantically Diverse Aspects

A group of semantically-related terms together reveal a

semantic aspect of API uses, for example, (thread, synchro-
nization, safe) for the issue of using java.util.HashMap in

multi-thread settings, (key, hashcode, equal) for the element

uniqueness issue of java.util.HashMap, and (order, insert,
iterate) for the element ordering issue of java.util.HashMap.

Clustering semantically related prominent terms helps to dis-

cover semantic aspects of an API, which in turn help to dis-

till semantically diverse API negative caveats.

Semantic relatedness between terms can be discovered

from term co-occurrence in sentences (Hua, Wang, Wang,

Zheng, & Zhou, 2015; Lund & Burgess, 1996). To capture

semantic relatedness between all prominent terms, we con-

struct a term co-occurrence graph, where nodes are promi-

nent terms and edges reflect the frequencies of term co-

occurrences in candidate API negative caveats. An edge is

added between two terms if their co-occurrence frequency is

above a threshold. To discover the different aspects of an

API, we cluster prominent terms in the graph into a set of

disjoint term communities. In particular, we use the Louvain

method (Blondel, Guillaume, Lambiotte, & Lefebvre, 2008).

It iteratively optimizes local communities until global modu-

larity no longer improves. Figure 3 shows the community

detection results for prominent terms of API java.util.Hash-

Map in our evaluation. This graph is constructed from the

top-100 prominent terms in the candidate API negative cav-

eats, and the edge co-occurrence frequency threshold is set

to 3. The node size is proportional to the degree centrality of

the node in the graph. Observe that the detected term com-

munities are semantically diverse (highlighted in different

colors in Figure 3). Each term community represents one

key semantic aspect of java.util.HashMap, including com-

parator implementation, element order, key/hashcode, and

multiple threads.

Selecting API Negative Caveats

The final step of DISCA is to select sentences to represent

each term community discovered in the earlier step. We

select sentences based on three intuitions: (i) prominence: the

selected sentences should be as prominent as possible; (ii)

quality: sentences should be of high quality, preferred from

highly voted answer posts; and (iii) nonredundancy: the

selected sentences should minimize redundant information.

Based on the three intuitions, we formulate the selection

of desirable API negative caveats as a weighted set cover
problem. Given an API type x, let Tx5ft1; t2; . . . ; tNg be a

set of N prominent terms in its term co-occurrence graph.

Assume M term-communities are detected in the term co-

occurrence graph, that is, Ux5fC1;C2; . . . CMg
(Ci \ Cj51). For a term-community Cm 2 Ux, there are K
prominent terms in this community, that is,

Cm5ftm1 ; tm
2 ; . . . ; tmKg, where the superscript m indicates the

m-th community, tm
K 2 Tx and [Cm5Tx. Recall that Candx is

a set of candidate API negative caveats for API type x. For

each sentence si 2 C andx, we represent si as a set of promi-

nent terms in the sentence, that is, si5fti
1; t

i
2; . . . ; ti

Wg where

the superscript i indicates the i-th sentence and ti
W 2 Tx. The

two sentences in Candx may have overlapping terms. Each

sentence si has a costðsiÞ. The goal is to find a set cover Ax

� C andx of minimal total sentence weight to cover all terms

in Tx, that is,

Minimize
X

si2Ax

cost sið Þ

Subject to
[

si2Ax

si5Tx

(1)

The costsðsiÞ is computed from two parts: (i) average value

of the prominence score of terms in sentence si by w(t)
defined earlier, denoted by promðsiÞ, and (ii) post score

postðsiÞ, the user votes of the post that contains sentence si.

These two scores are normalized independently based on

their corresponding maximum and minimal values. Then

costsðsiÞ is a linear combination of the two scores.

costðsiÞ52a � promðsiÞ2b � postðsiÞ (2)

where a and b are the coefficients and a1b51. The intuitive

interpretation of Equation (2) is that the selected sentences

should be as prominent as possible and have been up-voted

by many users. The two coefficients control the trade-off

between prominence and quality of sentences (set equal in

this work).

FIG. 3. Term communities shown in different colors identified from

the term co-occurrence graph of java.util.HashMap. [Color figure can be

viewed at wileyonlinelibrary.com]

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi

71466 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018
DOI: 10.1002/asi



The weighted set cover problem in Equation (1) is NP-

hard (Aho & Hopcroft, 1974). But there is a polynomial

time greedy approximate algorithm, which provides a Oðlog

nÞ approximate solution (Blondel et al., 2008). Algorithm 1

shows the steps of this greedy approximate algorithm for

selecting a set of representative sentences from candidate

API negative caveats to satisfy Equation (1). Instead of

selecting sentences to cover the term set Tx as a whole, we

use a divide-and-conquer strategy that selects sentences for

one randomly selected term community at a time (Lines 2–

3). This divide-and-conquer strategy, together with nonre-

dundant sentence selection mechanism (Line 7), ensures the

semantic diversity of the selected sentences, even though the

mentions of API negative caveats related to different seman-

tic aspects of an API are imbalanced.

For a term community Cm, the inner loop (Lines 4–10)

continues until the union of prominent terms in the

selected sentences wm, covers all terms in Cm. The notation

jsi n TðwmÞj (Line 7) denotes the number of terms in si that

are not in the selected sentences wm. The notation pðsiÞ is

the production of costðsiÞ and the number of newly added

terms if si is selected (Line 7). The intuition is that the more

new terms brought in by selecting sentence si, the more

likely the sentence will be selected. A sentence once

selected is removed from candidate negative caveats set

Candx (Line 10). The algorithm returns the map of the

selected sentences for each term community as desirable

API negative caveats for API x.

Consider the “multiple thread synchronized” term com-

munity for java.util.HashMap (in orange color) in Figure 3.

Figure 4 shows the API negative caveats selected by Algo-

rithm 1 for this term community. Observe that all three neg-

ative caveats are related to multi thread and synchronization
issues of HashMap, and there is no redundancy. Instead, the

selected sentences together provide complementary informa-

tion for better understanding the issues, compared to the sen-

tence “this implementation is not synchronized” in the

official API documentation of HashMap. The second and

third sentences even provide alternative APIs that are not

mentioned in the official documentation.

Evaluation

Our evaluation aims to answer the following five research

questions:

• RQ1: How much improvement can the DISCA approach

achieve over baseline methods?
• RQ2: How effective is the proposed DISCA approach in

guaranteeing diversity over the baseline methods?
• RQ3: To what extent does the DISCA approach miss the API

negative caveats stated in official API documentation?
• RQ4: To what extent does the DISCA approach augment the

official API documentation?
• RQ5: How important are the distilled API negative caveats

by the DISCA approach?

FIG. 4. Selected API negative caveats for the term community “multiple thread synchronized”.

8 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1467



Experimental Settings

Data collection. From the official Java 8.0 website, we

obtain 4,240 Java API types. We collect all Stack Overflow

posts tagged with Java from the March 2016 data dump as the

general corpus. Among the posts, 1,081,439 sentences mention

at least one Java API type. For the top 10 most frequently men-

tioned Java packages, we choose the top 1 frequently men-

tioned API type in each package in our evaluation. Reported in

Table 2 (the first three column), the 10 API types have a wide

range of mention frequency (MF) and candidate API negative

caveats (Candx) ranging from tens to hundreds of sentences.

We made our data set publicly available.6

Parameter setting for DISCA. The configuration of DISCA

is based on the performance of a development set (java.util.-

HashMap). Accordingly, for each of the 10 API types, we

use the top-100 prominent terms in its candidate API nega-

tive caveats to construct the term co-occurrence graph with

term co-occurrence frequency being set at 3. The resulting

term co-occurrence graph has 3 to 6 term-communities. The

a and b parameters for costðsiÞ are set to 0.5.

Baseline methods. Our approach is a data-driven approach

and is unsupervised, because there are no training data to

learn from. This limits our choices of baseline methods, as

many recent summarization methods adopt supervised learn-

ing and require training data (see Automatic Text Summari-

zation). Thus, we compare DISCA with four classical text-

summarization methods. All methods take candidate API

negative caveats for an API type as input, and independently

select a subset of sentences as summaries.

• LexRank: This method selects important sentences based on

the concept of eigenvector centrality in a graph representa-

tion of sentences (Erkan & Radev, 2004). Cosine similarity

is used to calculate the similarity between two sentences.
• LDA: This method represents each sentence in a vector

space using Latent Dirichlet Allocation (LDA) topic model

(Blei et al., 2003). For each topic, the sentence with the max-

imum probability is selected as an API negative caveat.

• KM: This method represents each sentence with a TF-IDF

vector and performs a k-means algorithm (MacQueen et al.,

1967) to cluster the sentences, then chooses the centroids in

clusters as API negative caveats.
• MMR: This method iteratively selects API negative caveats

with the maximal marginal relevance that measures novelty

and diversity of the selected sentences (Goldstein et al., 1999).

Evaluation metrics. We use two evaluation metrics,

namely, ROUGE and nDCG.

• ROUGE measures the quality of a summary by counting the

unit overlaps between a machine-generated summary and a

set of gold standard summaries. ROUGE-N is the n-gram

recall computed as follows:

ROUGE2N5

X
S2ref

X
gramn2S

Countmatch gramnð Þ
X

S2ref

X
gramn2S

Count gramnð Þ
(3)

where n represents the length of the n-gram, and ref is the

set of the gold standard summaries.

In our evaluation, we used the ROUGE toolkit (Lin,

2004) (v. 1.5.5) with ROUGE-1 (unigram-based) and

ROUGE-2 (bigram-based). We also use ROUGE-SU4 that

measures unigram recall and skip-bigram recall with maxi-

mum skip distance of 4. These three ROUGE measures have

been shown to be able to identify the machine-generated

summary that is the most correlated with human summaries

(Lin & Hovy, 2003; Ganesan, Zhai, & Han, 2010).

• nDCG measures the performance of a ranked list based on

graded relevance levels. The main idea of nDCG is that the

more relevant items should be ranked higher than those less

relevant items. It is computed as follows:

nDCG@k5
DCG@k

IDCG
5

1

IDCG

Xk

i51

2reli 21

log 2 i11ð Þ (4)

DCG@k is the Discounted Cumulative Gain accumulated

at a particular rank position k. The idea of DCG@k is that

highly relevant documents appearing lower in ranking

TABLE 2. The statistics of Java API types used in evaluations.

API types Mention frequency Candx # Term communities DISCA

java.util.ArrayList 55,802 689 4 18

javax.swing.JFrame 27,468 302 6 17

java.lang.NullPointerException 20,079 133 4 24

javax.xml.bind.JAXB 14,445 191 6 16

java.io.IOException 7,223 97 4 18

java.awt.event.ActionListener 7,014 82 5 17

java.sql.ResultSet 6,948 94 6 14

java.text.SimpleDateFormat 6,585 136 5 22

java.math.BigDecimal 6,568 78 3 12

java.nio.ByteBuffer 3,193 26 3 6

Note. “Candx” and “DISCA” denote number of candidate API negative caveats and number of negative caveats mined by DISCA, respectively.

6https://github.com/IRNLPCoder/CaveatDataSet

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi

91468 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018
DOI: 10.1002/asi



results should be penalized. nDCG@k is the normalized dis-

counted cumulative gain, with respect to IDCG, which is the

discounted cumulative gain of the ideal ordering of all

instances. reli is the relevance score of the i-th element in

the ranked list. LexRank and MMR output a ranked list of

sentences. For LDA and KM, we rank the centroids based

on cluster size. In DISCA, Algorithm 1 ranks the API nega-

tive caveats for a term community. A ranked list of API neg-

ative caveats across communities is then obtained by

ranking all term-communities based on the highest degree

centrality of the communities. For the relevance judgment,

the relevance level of each negative caveat is defined as the

number of annotators who select the sentence. For example,

the relevance of a negative caveat is 3 if all three annotators

select this sentence in their gold standard summary and the

relevance is 0 if no annotator selects it.

Gold standard generation. To make a fair comparison,

selecting the same number of words or sentences is com-

monly used in the comparison of text-summarization meth-

ods (Wang, Zhu, Li, & Gong, 2012; Ganesan et al., 2010).

In our experiments, for each API type in Table 2 we use

each of the four baseline methods to select the same number

of API negative caveats as DISCA selects. Then we mix the

selected sentences of the five methods for human annotation.

The annotators do not know which sentences are from which

methods. We recruit three annotators who all have more

than 4 years of programming experience in Java and are

familiar with the 10 Java types in Table 2. Because there are

five methods, we ask each annotator to select 20% of senten-

ces from the mixed sentences, based on the following crite-

ria: (i) the selected sentences should cover prominent and

diverse topics, and (ii) the selected sentences should be

informative and context-independent.

Overall, 25.9%, 19.2%, 14.5%, 20.3%, and 20.1% of the

selected sentences by annotators are from DISCA, LexRank,

LDA, KM, and MMR, respectively. We consider the

selected sentences by the three annotators as three indepen-

dent gold standard summaries for an API type, because the

evaluation metric ROUGE can handle multiple gold stan-

dard summaries.

Interannotator agreement. The Jackknifing procedure

(Lin, 2004; Ganesan et al., 2010) is widely used to estimate

average human performance from multiple reference sum-

maries. Thus, we use the Jackknifing procedure to quantita-

tively assess the interannotator agreement. With this

procedure, the ROUGE scores are computed over K sets of

K – 1 reference summaries. That is, each human summary is

evaluated against the remaining K – 1 gold standard summa-

ries, and the average ROUGE scores are computed as

reported in Table 3. Observe from the table that the average

scores of ROUGE-1, ROUGE-2, and ROUGE-SU4 are

0.7571, 0.6325, and 0.6363, respectively. The largest stan-

dard deviation is about 0.0136, which indicates that the

ROUGE scores of different annotators are close to the mean.

In short, we can see that the annotators have good agreement

among themselves.

Quantitative Evaluation

RQ1: How much improvement can the DISCA approach
achieve over the four baseline methods? Motivation: A

novel approach, DISCA, is proposed in this work to distill

API negative caveats from a large amount of unstructured

data. Experimental Settings lists four classical text-

summarization methods. We would like to investigate

whether the proposed DISCA performs better than the base-

line methods in terms of ROUGE and nDCG.

Approach: We have generated gold standard summaries

for the Java API types in Table 2, where annotators achieved

a good agreement among them. Given gold standard sum-

maries, we compare the performance of DISCA with the four

baselines. Moreover, we apply the paired t-test to test the

statistical significance of the improvements between DISCA

and baseline methods.

Results: We first report the ROUGE and nDCG scores

for the negative caveats produced by each method against

the gold standard summaries. Table 4 reports the ROUGE

scores of the five methods, and Figure 5 plots nDCG values

of these methods at different rank positions. We also list

ROUGE-1, ROUGE-2, and ROUGE-SU4 for the 10 Java

API types using DISCA in Table 5. From the results, we

made the following observations.

First, DISCA achieves the best performance against the

four baseline methods in terms of all ROUGE scores and all

nDCG values. In terms of ROUGE scores, DISCA achieves

22.47%, 12.25%, 10.66%, and 10.60% improvements over

LDA, KM, LexRank, and MMR, respectively. For nDCG,

DISCA achieves 42.87%, 17.65%, 20.01%, and 17.63%

TABLE 3. Agreement between annotators, by evaluating the summary

of one annotator against the summaries of the other two annotators on

three ROUGE measures.

Annotator ROUGE-1 ROUGE-2 ROUGE-SU4

Human A 0.7478 0.6169 0.6231

Human B 0.7609 0.6393 0.6410

Human C 0.7626 0.6414 0.6447

Average 0.7571 6 0.0081 0.6325 6 0.0136 0.6363 6 0.0116

TABLE 4. Performance of the five methods on ROUGE measures.

Method ROUGE-1 ROUGE-2 ROUGE-SU4

LDA 0.5473 0.3202 0.3550

KM 0.6026 0.3498 0.3836

LexRank 0.6045 0.3555 0.3923

MMR 0.6097 0.3583 0.3868

DISCA 0.6269* 0.4152* 0.4374*

Note. The best performance is highlighted in bold face.

*The improvements made by DISCA over the best baseline is sta-

tistically significant under paired t-test with p � :05.

10 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1469



improvements over the four methods. The improvements are

statistically significant for the three kinds of ROUGE scores

and nDCG under paired t-test with p � :05. As shown in

Figure 5, the higher the nDCG, the better the ranking result.

With our approach, the most relevant caveats for an API are

ranked at top-most positions leading to a higher nDCG. We

attribute this to the fact that DISCA takes context-

independence, prominence, semantic diversity, and semantic

nonredundancy into account when selecting desirable API

negative caveats.

Second, LDA yields the worst performance in terms of

ROUGE scores and nDCG. A challenge in using LDA is to

set an appropriate number of topics. In this evaluation, the

number of topics is based on the number of API negative

caveats that DISCA distills. From the results of LDA, we note

that having too many topics results in the extracted topics to

be similar to each other. On the other hand, too few topics

makes the extracted topics less meaningful or noninterpret-

able. Unfortunately, without prior knowledge of the distribu-

tion of candidate API negative caveats, it is difficult to set

the right topic number. According to the ROUGE scores in

Table 4, MMR outperforms KM. That is, the summaries of

MMR are closer to gold standard summaries than KM with-

out considering the relevance ranking of selected sentences.

However, when considering the relevance ranking of the

selected sentences, Figure 5 shows that KM outperforms

MMR in nDCG values. This is because the sentences

selected by KM are ranked by cluster size that reflects the

prominence of the selected sentences. The performance of

LexRank is comparable to that of MMR, because LexRank

takes into account both relevance ranking and diversity.

Recall that LexRank first ranks candidate API negative cav-

eats in a graph model based on sentence similarity. Then it

uses a greedy algorithm to select diverse sentences. The

main issue of LexRank and MMR is that both are based on

sentence-level lexical similarity, which cannot distinguish

lexically different but semantically redundant sentences.

Third, although the performance of DISCA varies for dif-

ferent API types in Table 5, DISCA outperforms all baseline

methods for all API types.7 We used Pearson’s correlation

test and the results show that there is no correlation between

the number of mentions of a type and the ROUGE score

obtained by DISCA. Among the 10 API types, DISCA has the

best performance for javax.xml.bind.JAXB and the worst

performance for java.io.IOException. For javax.xml.bind.-

JAXB, most candidate API negative caveats discuss issues

related to “XML document,” “unmarshal” and “marshal.”
These repetitive discussions have more n-gram overlap,

which leads to higher ROUGE scores. For java.io.IOExcep-

tion, it is a common IO exception class that can be thrown in

many different scenarios. As such, the sentences that discuss

IOException have the least level of overlap, which leads to

lower ROUGE score.

RQ2: How effective is the proposed DISCA approach in
guaranteeing diversity over the four baseline
methods?. Motivation: As shown in Discovering Semanti-

cally Diverse Aspects, DISCA discovers semantically diverse

aspects using a graph clustering technique. Given gold stan-

dard summaries, RQ1 investigated the overall performance

of DISCA and the baseline methods. We would like to con-

firm the ability of DISCA in guaranteeing diversity over the

baseline methods.

Approach: To answer this research question, we conduct

an intermethod comparison, which compares the relative

performance between one method and the other four meth-

ods using the Jackknifing procedure (Lin, 2004). That is, we

treat the summary of one method as a machine-generated

summary, and the summaries of the other four methods as

reference summaries. Then we measure the performance of

each combination in terms of ROUGE score.

Results: Table 6 reports the results of the intermethod

comparison. First, LexRank and MMR outperform LDA and

KM. This is in line with our previous analysis that LexRank

and MMR take into account both relevance ranking and

diversity, while LDA and KM do not. Second, the table

shows that DISCA achieves the best performance in all

ROUGE scores when the summaries of the other four base-

line methods are used as reference summaries. In contrast,

the performance of the other four baseline methods is poorer

when the summary of DISCA is used as a reference summary.

FIG. 5. nDCG values of the five methods at different ranking positions

{1, 2, 3, 4, 5, all}. [Color figure can be viewed at wileyonlinelibrary.com]

TABLE 5. ROUGE scores obtained by DISCA on different Java API

types.

API types ROUGE-1 ROUGE-2 ROUGE-SU4

java.util.ArrayList 0.6618 0.4669 0.4855

javax.swing.JFrame 0.6658 0.4033 0.4311

java.lang.NullPointerException 0.6605 0.3761 0.4247

javax.xml.bind.JAXB 0.7296 0.5153 0.5304

java.io.IOException 0.4733 0.2639 0.2848

java.awt.event.ActionListener 0.6587 0.3985 0.4311

java.sql.ResultSet 0.6130 0.3933 0.4128

java.text.SimpleDateFormat 0.5072 0.3302 0.3465

java.math.BigDecimal 0.6188 0.4558 0.4709

java.nio.ByteBuffer 0.6831 0.5512 0.5580

Average 0.6269 0.4152 0.4374 7Detailed results not reported for the interests of page space.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi

111470 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018
DOI: 10.1002/asi



These results indicate that none of the baseline methods can

well cover API negative caveats that DISCA distills, but

DISCA covers theirs. We attribute this to the fact that DISCA

can distinguish lexically different but semantically redun-

dant– sentences (see Discovering Semantically Diverse

Aspects), while LexRank and MMR only consider sentence-

level lexical similarity. In short, the summaries of DISCA are

more diverse than the baseline methods.

Qualitative Analysis

RQ3: To what extent does the DISCA approach miss the
API negative caveats stated in official API
documentation? Motivation: Some API negative caveats

are documented when API designers wrote software docu-

mentation. The distilled caveats by DISCA are from crowd-

generated Q&A discussions. We are interested to know how

many caveats stated in official API documentation the pro-

posed DISCA may miss.

Approach: To answer this research question, we compare

the API negative caveats mentioned in official API docu-

mentation and those distilled by DISCA. We recruited two

developers to read the official documentation of the 10 Java

API types to annotate the API negative caveats mentioned in

these documents. If a distilled API negative caveat and a

mentioned API negative caveat both discuss the same aspect

of a given API type, we manually judge that they match

each other. For inconsistent judgments, the two developers

reached a consensus through discussion.

Result: Table 7 reports the results of this comparative

study. The three columns show the numbers of negative cav-

eats that are mentioned in official documentation, distilled

by DISCA, and the matched ones. Observe that only 5 out of

10 official documentation mention negative caveats and in

total six negative caveats are mentioned. DISCA manages to

identify four out of the six mentioned negative caveats. One

missed negative caveat is about rounding behavior of java.-

math.BigDecimal class.8 The other missed negative caveat

is from javax.swing.JFrame.9 By checking our data set, we

find that none of the candidate API negative caveats for Big-

Decimal mention “rounding mode” or relevant concepts; the

same observation holds for JFrame. Searching Stack Over-

flow website using queries “BigDecimal rounding mode”

and “JFrame serialized objects” results in 105 and 45 posts,

respectively. We did not find any negative sentences discus-

sing the two issues in the search results. The results suggest

that the two missed API negative caveats have not been well

discussed on Stack Overflow.

RQ4: To what extent does the DISCA approach augment
the official API documentation? Motivation: RQ3 reveals

that two out of six negative caveats were missed by DISCA.

However, little is known about how many of the negative

caveats distilled by DISCA are false-positive instances. More-

over, we would like to investigate to what extent the DISCA

approach augments the official API documentation.

Approach: We recruited two developers to examine the

distilled negative caveats to find the false positives. The

annotation was done individually by the two developers and

for inconsistent judgments, the two developers reached a

consensus through discussion.

Results: For the 10 API types, DISCA distills 164 negative

caveats related to 46 semantic aspects of the 10 API types.

Recall that each term-community is considered a semantic

aspect of an API, and it may have several complementary

API negative caveats (see Figure 4). The annotation finds

that there are only 18 false-positive instances. There are two

main reasons for false-positive instances. First, DISCA distills

seven programming exceptions as API negative caveats. For

example, one of the false positive instances is “Exception:
IOException is not compatible with throws clause in
Plants.eat().” This is an exception related to the implemen-

tation of a specific program, Plants.eat(), but not the API

IOException. Second, 11 false-positive instances are

context-dependent sentences that our sentence filtering pat-

terns fail to filter out. For example, in the sentence “you can-

not attach an ActionListener without having to rewrite the

controller and the view,” “the controller” and “the view”

TABLE 6. Results of intermethod comparison, based on ROUGE

measures.

Method ROUGE-1 ROUGE-2 ROUGE-SU4

LDA 0.5368 0.2617 0.3051

KM 0.5419 0.2718 0.3142

MMR 0.5724 0.3073 0.3537

LexRank 0.5859 0.31357 0.3569

DISCA 0.6098* 0.3431* 0.3839*

Note. For each method in first column, the summaries of the other

four methods are treated as its reference summaries. *The improvements

made by DISCA over the best baseline is statistically significant using

paired t-test with p � :05.

TABLE 7. The three columns show the numbers of negative caveats

that are mentioned in official documentation, distilled by DISCA, and the

matched between the two.

API types Mentioned Matched DISCA

java.util.ArrayList 1 1 18

javax.swing.JFrame 1 0 17

java.lang.NullPointerException 0 0 24

javax.xml.bind.JAXB 0 – 16

java.io.IOException 0 – 18

java.awt.event.ActionListener 0 – 17

java.sql.ResultSet 1 1 14

java.text.SimpleDateFormat 2 2 22

java.math.BigDecimal 1 0 12

java.nio.ByteBuffer 0 – 6

Sum 6 4 164

8If no rounding mode is specified and the exact result cannot be rep-

resented, an exception is thrown. https://docs.oracle.com/javase/8/docs/

api/java/math/BigDecimal.html
9Serialized objects of this class will not be compatible with future

Swing releases. https://docs.oracle.com/javase/8/docs/api/javax/swing/

JFrame.html

12 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1471



refer to other parts of the discussion. As such, this sentence

is hard to understand without additional context. Although

there is a small percentage (about 11%) of false-positive

instances, DISCA distills 146 correct API negative caveats

that can drastically augment the 10 official API documents.

RQ5: How important are the distilled API negative
caveats by the DISCA approach? Motivation: RQ4 reveals

that DISCA greatly augments the official API documentation.

However, readers may not have an intuitive impression for

these distilled caveats. We now show the importance of the

distilled API negative caveats through intuitive examples.

Approach: To answer this research question, we con-

ducted a case study to present the distilled API negative cav-

eats of four Java API types. We selected three API types in

Table 2: javax.swing.JFrame, java.awt.event.ActionLi-

stener, and java.math.BigDecimal, which are mentioned fre-

quently, moderately, and relatively infrequently. We also

include java.util.HashMap, which has been used to illustrate

our approach throughout our discussion. For the four API

types, DISCA detects 4, 6, 5, and 3 term-communities, respec-

tively. For each term-community, we list the top-1 ranked

API negative caveat as a representative caveat in Table 8.

Results: For java.util.HashMap, its long official docu-

mentation mentions three negative caveats related to ele-

ment order, multiple threads synchronization, and

comparable element. Only the sentence for multiple threads

is in bold text. Compared with the lengthy official documen-

tation, the API negative caveats (1.1), (1.2), and (1.3) in

Table 8 show that DISCA helps to reveal hard-to-notice API

negative caveats. Furthermore, DISCA augments the official

documentation with caveat (1.4) about multiple values for

the same key. This may seem natural, but is often

overlooked. Making it explicit provides an important

reminder for novice developers.

For javax.swing.JFrame, all the mined API negative cav-

eats by DISCA do not exist in its Javadoc. Caveats (2.1) and

(2.2) caution users about not extending JFrame and JFrame

being not focusable. Moreover, they give alternative solu-

tions at the same time. Caveat (2.3) emphasizes that JFrame

has no paintComponent method. Caveats (2.4), (2.5), and

(2.6) are on the issues related to setting JFrame visible, vali-

dating JFrame, and setting JFrame size, respectively. These

API negative caveats are difficult to document by API

designers, because they mainly emerge from misuse in

practice.

For java.awt.event.ActionListener, its Javadoc does not

mention any API negative caveats. DISCA distills five nega-

tive caveats. Caveats (3.1) and (3.2) not only caution users

that they cannot add ActionListener to JFrame or JPanel but

also explain the reason behind. Caveats (3.2), (3.3), and

(3.5) are good but implicit coding practices when imple-

menting ActionListener. It is infeasible for API designers to

take all these aspects into account when documenting API,

because these API negative caveats can only be accumulated

in practice.

For java.math.BigDecimal, although DISCA does not find

API negative caveat regarding round mode of BigDecimal,

it finds three other negative caveats. Caveat (4.1) warns

developers that “BigDecimal is not a primitive type.” Simi-

larly, caveats (4.2) and (4.3) provide two important use cau-

tions about “fixed length decimal” and “autoboxing.” These

to-be-avoided use contexts are hard to foresee.

Threats to Validity

This section outlines potential threats to the validity of

this study.

TABLE 8. Examples of API negative caveats mined by DISCA.

java.util.HashMap
(1.1) HashMap does not provide any guarantees of order among its entries.

(1.2) HashMap is not thread safe for concurrent access.

(1.3) HashMap does not need keys to be Comparable but still implements Map interface.

(1.4) HashMap cannot store multiple values for the same key.

javax.swing.JFrame

(2.1) Don’t extend a JFrame, but instead create a local JFrame variable and use it.

(2.2) JFrame isn’t focusable JComponent, you would need to use focusable contianer for example, JPanel.

(2.3) JFrame does not extend JComponent and does not have a paintComponent method.

(2.4) You shouldn’t set a JFrame visible until all the components have been added.

(2.5) Calling validate on a top-level component (JWindow, JDialog, JFrame) will not necessarily resize that component.

(2.6) Don’t call JFrame#setSize(..) on JFrame rather just call JFrame#pack() before setting JFrame visible.

java.awt.event.ActionListener

(3.1) You can’t add an ActionListener to a JFrame, it does not function like a button and so has no action listeners.

(3.2) An ActionListener can’t be added to a JPanel, as a JPanel itself does not lend itself to create what is considered to be “actions.”

(3.3) Don’t implement ActionListener in top classes, use anonymous classes or private classes instead.

(3.4) Don’t implement single ActionListener for multiple components.

(3.5) An ActionListener cannot distinguish states on it’s own, it simply responds to a user input.

java.math.BigDecimal

(4.1) BigDecimal is not a primitive type.

(4.2) BigDecimal cannot support numbers that cannot be written as a fixed length decimal, for example, 1/3.

(4.3) Unlike Integer and Double, BigDecimal does not participate in autoboxing.

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi

131472 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018
DOI: 10.1002/asi



Use of Data

All APIs investigated in our evaluation are Java JDK

APIs, and our evaluation uses only Stack Overflow discus-

sions. The framework of DISCA makes no specific assump-

tions about APIs and discussion data. Therefore, it is

generally applicable for other programming languages or

third-party libraries or other Q&A websites, which we leave

as our future work. Our quantitative evaluation is based on

gold standard summaries generated by human annotators.

They could be biased. But our interannotator agreement

analysis suggests that the gold standard summaries used in

the evaluation are acceptable.

Coverage of Candidate Sentences

First, DISCA currently uses a simple name-matching strat-

egy to select candidate sentences. Entity linking approaches

(Ji, Sun, Cong, & Han, 2016; Ye, Xing, Foo, Li, & Kapre,

2016; Moro, Raganato, & Navigli, 2014) based on machine

learning could improve the performance of DISCA, because

these approaches can better handle API-mention variations

and thus provide more candidate sentences for selection.

Second, based on our observation, important informa-

tion about a caveat mostly appears in a single sentence on

Stack Overflow. DISCA may miss some multiple-sentences

caveats because DISCA is designed at the single sentence

level. However, it is infeasible to get the number of

multiple-sentence caveats without manual annotation of the

data. We show one example here: “Iterator returned by

HashMap are fail-fast while Enumeration returned by the

HashTable are fail-safe. Fail-safe is relevant from the con-

text of iterators. If an iterator has been created on a collec-

tion object and some other thread tries to modify the

collection object ‘structurall,’ a concurrent modification

exception will be thrown.” These three sentences are about

the caveat of “thread safe.” Although our approach will not

extract these three sentences, it will extract “HashMap is

not thread safe for concurrent access” from many other

single-sentence candidates for this caveat.

Third, the sentence selection process of DISCA may result

in missing some caveats because of some strict restrictions

(for example, removing subjective opinions in section Input

Data, selecting explicitly negative sentences in section Select-

ing Candidate Sentences, selecting prominent terms in section

Identifying Prominent Domain-Specific Terms). Given the

thousands of sentences to be examined during the sentence

selection process, annotating intermediate results and analyz-

ing influence factors requires much human effort, if even fea-

sible. As many sentences are available for important caveats,

our proposed approach is able to pick up the representative

sentences even though some sentences are missed.

Conclusion and Future Work

This research identifies a new task of distilling crowd-

sourced API negative caveats from a large volume of

programming-related discussions. We present an effective

text-summarization approach to distilling context-

independent, prominent, semantically diverse, and nonre-

dundant API negative caveats. Our approach significantly

outperforms other text-summarization methods, including

the methods that are based on eigenvector centrality of sen-

tence graph, topic modeling, sentence clustering, and sen-

tence diversification. Furthermore, our approach greatly

augments official API documentation with crowdsourced

API negative caveats and explanations, as well as sugges-

tions (for example, alternative APIs) for solving API use

issues. We are developing web applications that can push

distilled API negative caveats when developers read API

documents. On the other hand, through this, we demonstrate

how to cast a domain-specific problem into an interesting

text summarization problem, and how to work on every sin-

gle step in this data-driven framework to achieve the desired

result. Our proposed solution opens a way to better support

programmers leveraging official API documentation and

social discussions in a Q&A website.

As a part of future study, we will mine programming

errors related to API negative caveats to develop semantic

search systems that can provide direct answers to such errors

caused by overlooking API negative caveats.

References

Aho, A.V., & Hopcroft, J.E. (1974). The design and analysis of com-

puter algorithms. Chennai, India: Pearson Education India.

Bacchelli, A., Cleve, A., Lanza, M., & Mocci, A. (2011). Extracting

structured data from natural language documents with island parsing.

In Proceedings of the International Conference on Automated Soft-

ware Engineering (pp. 476–479).

Bacchelli, A., Ponzanelli, L., & Lanza, M. (2012). Harnessing stack

overflow for the ide. In Proceedings of the ACM Recommender Sys-

tems (pp. 26–30).

Barzilay, R., & Elhadad, M. (1999). Using lexical chains for text sum-

marization. Advances in Automatic Text Summarization, pp. 111–

121.

Beyer, S., & Pinzger, M. (2016). Grouping android tag synonyms on

stack overflow. In Proceedings of the International Conference on

Mining Software Repositories (pp. 430–440).

Bing, L., et al. (2015). Abstractive multi-document summarization via

phrase selection and merging. In Proceedings of the 53rd Annual

Meeting of the Association for Computational Linguistics (pp. 1587–

1597).

Blei, D.M., Ng, A.Y., & Jordan, M.I. (2003). Latent Dirichlet Alloca-

tion. Journal of Machine Learning Research, 3(Jan), 993–1022.

Blondel, V.D., Guillaume, J.-L., Lambiotte, R., & Lefebvre, E. (2008).

Fast unfolding of communities in large networks. Journal of Statistical

Mechanics: Theory and Experiment, 2008(10), P10008.

Brandt, J., Dontcheva, M., Weskamp, M., & Klemmer, S.R. (2010).

Example-centric programming: integrating web search into the devel-

opment environment. In Proceedings of the SIGCHI Conference on

Human Factors in Computing Systems (pp. 513–522).

Cao, Z., et al. (2015). Learning summary prior representation for extrac-

tive summarization. In Proceedings of the 53rd Annual Meeting of the

Association for Computational Linguistics (pp. 829–833).

Chen, C., Xing, Z., & Wang, X. (2017). Unsupervised software-specific

morphological forms inference from informal discussions. In Proceed-

ings of the International Conference on Software Engineering.

Chen, N., Lin, J., Hoi, S. C., Xiao, X., & Zhang, B. (2014). Ar-miner:

mining informative reviews for developers from mobile app

14 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1473



marketplace. In Proceedings of the International Conference on Soft-

ware Engineering (pp. 767–778).

Dagenais, B., & Robillard, M. P. (2012). Recovering traceability links

between an API and its learning resources. In Proceedings of the

International Conference on Software Engineering (pp. 47–57).

Erkan, G., & Radev, D.R. (2004). Lexrank: Graph-based lexical central-

ity as salience in text summarization. Journal of Artificial Intelligence

Research, 22, 457–479.

Ganesan, K., Zhai, C., & Han, J. (2010). Opinosis: a graph-based

approach to abstractive summarization of highly redundant opinions.

In Proceedings of COLING (pp. 340–348).

Genest, P.-E., & Lapalme, G. (2012). Fully abstractive approach to

guided summarization. In Proceedings of the 50th Annual Meeting of

the Association for Computational Linguistics: Short for Examples-

Volume 2 (pp. 354–358).

Goldstein, J., Kantrowitz, M., Mittal, V., & Carbonell, J. (1999). Sum-

marizing text documents: sentence selection and evaluation metrics.

In Proceedings of the Annual International ACM SIGIR Conference

on Research and Development in Information Retrieval (pp. 121–

128).

Gu, X., & Kim, S. (2015).” what parts of your apps are loved by

users?”(t). In Proceedings of the International Conference on Auto-

mated Software Engineering (pp. 760–770).

Harabagiu, S.M., & Lacatusu, F. (2002). Generating single and multi-

document summaries with gistexter. In Proceedings of the Document

Understanding Conferences (pp. 11–12).

Hua, W., et al. (2015). Short text understanding through lexical-

semantic analysis. In Proceedings of the International Conference on

Data Engineering (pp. 495–506).

Ji, Z., Sun, A., Cong, G., & Han, J. (2016). Joint recognition and linking

of fine-grained locations from tweets. In Proceedings of WWW (pp.

1271–1281).

Kim, J., Lee, S., Hwang, S.-w., & Kim, S. (2009). Adding examples

into java documents. In Proceedings of the International Conference

on Automated Software Engineering (pp. 540–544).

Kramer, D. (1999). API documentation from source code comments: a

case study of javadoc. In Proceedings of SIGDOC (pp. 147–153).

Lee, C.-S., Jian, Z.-W., & Huang, L.-K. (2005). A fuzzy ontology and

its application to news summarization. IEEE Transactions on Systems,

Man, and Cybernetics, Part B (Cybernetics), 35(5), 859–880.

Li, J., Sun, A., & Xing, Z. (2018). Learning to answer programming

questions with software documentation through social context embed-

ding. Information Sciences, 448–449, 36–52.

Li, J., Xing, Z., & Kabir, A. (2018). Leveraging official content and

social context to recommend software documentation. IEEE Transac-

tions on Services Computing, doi: 10.1109/TSC.2018.2812729.

Li, J., Xing, Z., Ye, D., & Zhao, X. (2016). From discussion to wisdom:

web resource recommendation for hyperlinks in stack overflow. In

Proceedings of the 31st Annual ACM Symposium on Applied Comput-

ing (pp. 1127–1133).

Lin, C.-Y. (2004). Rouge: A package for automatic evaluation of sum-

maries. In Proceedings of ACL-04 Workshop (Vol. 8).

Lin, C.-Y., & Hovy, E. (2003). Automatic evaluation of summaries

using n-gram co-occurrence statistics. In Proceedings of NAACL HLT

(pp. 71–78).

Lund, K., & Burgess, C. (1996). Producing high-dimensional semantic

spaces from lexical co-occurrence. Behavior Research Methods,

Instruments, & Computers, 28(2), 203–208.

MacQueen, J., et al. (1967). Some methods for classification and analysis of

multivariate observations. In Proceedings of the Fifth Berkeley Sympo-

sium on Mathematical Statistics and Probability (Vol. 1, pp. 281–297).

Matsuo, Y., & Ishizuka, M. (2004). Keyword extraction from a single

document using word co-occurrence statistical information. In Proc-

cedings of the International Journal on Artificial Intelligence Tools,

13(01), 157–169.

Miao, Q., Li, Q., & Zeng, D. (2010). Fine-grained opinion mining by

integrating multiple review sources. Journal of the Association for

Information Science and Technology, 61(11), 2288–2299.

Moro, A., Raganato, A., & Navigli, R. (2014). Entity linking meets

word sense disambiguation: a unified approach. Transactions of the

Association for Computational Linguistics, 2, 231–244.

Nallapati, R., Zhou, B., Santos, C.N. dos, G€ulçehre, Ç., & Xiang, B.

(2016). Abstractive text summarization using sequence-to-sequence

rnns and beyond. In Proceedings of the 20th SIGNLL Conference on

Computational Natural Language Learning, CoNLL 2016, Berlin,

Germany, August 11–12, 2016 (pp. 280–290).

Park, Y., Patwardhan, S., Visweswariah, K., & Gates, S.C. (2008). An

empirical analysis of word error rate and keyword error rate. In Pro-

ceedings of Interspeech (pp. 2070–2073).

Parnin, C., Treude, C., Grammel, L., & Storey, M.-A. (2012). Crowd

documentation: Exploring the coverage and the dynamics of API dis-

cussions on stack overflow. Georgia Institute of Technology, Techni-

cal Reports.

Paulus, R., Xiong, C., & Socher, R. (2017). A deep reinforced model

for abstractive summarization. CoRR, abs/1705.04304.

Ponzanelli, L., Bacchelli, A., & Lanza, M. (2013). Leveraging crowd

knowledge for software comprehension and development. In Proceed-

ings of the European Conference on Software Maintenance and Reen-

gineering (pp. 57–66).

Ponzanelli, L., Bavota, G., Di Penta, M., Oliveto, R., & Lanza, M.

(2014). Mining stackoverflow to turn the ide into a self-confident pro-

gramming prompter. In Proceedings of the International Conference

on Mining Software Repositories (pp. 102–111).

Ponzetto, S.P., & Strube, M. (2007). Deriving a large scale taxonomy

from Wikipedia. In Proceedings of AAAI (Vol. 7, pp. 1440–1445).

Rahman, M.M., Roy, C.K., & Lo, D. (2016). Rack: Automatic API Rec-

ommendation Using Crowdsourced Knowledge. In Proceedings Of

The International Conference on Software Analysis, Evolution, and

Reengineering (Vol. 1, pp. 349–359).

Ren, P., et al. (2017). Leveraging contextual sentence relations for extrac-

tive summarization using a neural attention model. In Proceedings of

the 40th International ACM SIGIR Conference on Research and Devel-

opment in Information Retrieval (pp. 95–104). New York: ACM.

Robillard, M. P., & Chhetri, Y.B. (2015). Recommending reference API

documentation. Empirical Software Engineering, 20(6), 1558–1586.

Robillard, M.P., & Deline, R. (2011). A field study of API learning

obstacles. Empirical Software Engineering, 16(6), 703–732.

Sahavechaphan, N., & Claypool, K. (2006). Xsnippet: Mining for sam-

ple code. ACM Sigplan Notices, 41(10), 413–430.

Serva, R., Senzer, Z.R., Pollock, L., & Vijay-Shanker, K. (2015). Auto-

matically mining negative code examples from software developer Q

& A forums. In Proceedings of the International Conference on Auto-

mated Software Engineering (pp. 115–122).

Shen, W., Wang, J., & Han, J. (2015). Entity linking with a knowledge

base: Issues, techniques, and solutions. IEEE Transactions on Knowl-

edge and Data Engineering, 27(2), 443–460.

Stylos, J., Faulring, A., Yang, Z., & Myers, B.A. (2009). Improving API

documentation using API usage information. In Proceedings of VL/

HCC (pp. 119–126).

Subramanian, S., Inozemtseva, L., & Holmes, R. (2014). Live API docu-

mentation. In Proceedings of the International Conference on Soft-

ware Engineering (pp. 643–652).

Tan, J., Wan, X., & Xiao, J. (2017). Abstractive document summariza-

tion with a graph-based attentional neural model. In Proceedings of

the 55th Annual Meeting of the Association for Computational Lin-

guistics (pp. 1171–1181).

Thummalapenta, S., & Xie, T. (2007). Parseweb: a programmer assistant

for reusing open source code on the web. In Proceedings of the

Twenty-second IEEE/ACM International Conference on Automated

Software Engineering (pp. 204–213).

Tjong Kim Sang, E.F., & De Meulder, F. (2003). Introduction to the

CONLL-2003 shared task: Language-independent named entity recog-

nition. In Proceedings of HLT-NAACL (pp. 142–147).

Treude, C., Barzilay, O., & Storey, M.-A. (2011). How do programmers

ask and answer questions on the web?: Nier track. In Proceedings of

the International Conference on Software Engineering (pp. 804–807).

JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi

151474 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018
DOI: 10.1002/asi



Treude, C., & Robillard, M.P. (2016). Augmenting API documentation

with insights from stack overflow. In Proceedings of the International
Conference on Software Engineering (pp. 392–403).

Vu, P.M., Nguyen, T.T., Pham, H.V., & Nguyen, T.T. (2015). Mining

user opinions in mobile app reviews: A keyword-based approach (t).

In Proceedings of the International Conference on Automated Soft-

ware Engineering (pp. 749–759).

Vu, P.M., Pham, H.V., Nguyen, T.T., et al. (2016). Phrase-based extraction

of user opinions in mobile app reviews. In Proceedings of the Interna-
tional Conference on Automated Software Engineering (pp. 726–731).

Wang, D., Zhu, S., Li, T., & Gong, Y. (2012). Comparative document

summarization via discriminative sentence selection. ACM Transac-

tions on Knowledge Discovery from Data, 6(3), 12.

Wisniewski, P., Xu, H., Lipford, H., & Bello-Ogunu, E. (2015). Face-

book apps and tagging: The trade-off between personal privacy and

engaging with friends. Journal of the Association for Information Sci-

ence and Technology, 66(9), 1883–1896.

Ye, D., et al. (2016). Software-specific named entity recognition in soft-

ware engineering social content. In Proceedings of the International

Conference on Software Analysis, Evolution, and Reengineering (Vol.

1, pp. 90–101).

Ye, D., Xing, Z., Foo, C.Y., Li, J., & Kapre, N. (2016). Learning to

extract API mentions from informal natural language discussions. In

Proceedings of the International Conference on Software Maintenance

and Evolution (pp. 389–399).

Zagalsky, A., Barzilay, O., & Yehudai, A. (2012). Example overflow:

Using social media for code recommendation. In Proceedings of the

Third International Workshop on Recommendation Systems for Soft-

ware Engineering (pp. 38–42).

16 JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—Month 2018

DOI: 10.1002/asi
JOURNAL OF THE ASSOCIATION FOR INFORMATION SCIENCE AND TECHNOLOGY—December 2018

DOI: 10.1002/asi
1475




