
Learning to Answer Programming Questions with Software
Documentation through Social Context Embedding

Jing Liᵃ𝄒∗, Aixin Sunᵃ, Zhenchang Xingᵇ

aSchool of Computer Science and Engineering, Nanyang Technological University, Singapore
bCollege of Engineering and Computer Science, Australian National University, Australia

Abstract

Official software documentation provides a comprehensive overview of software

usages, but not on specific programming tasks or use cases. Often there is a mismatch

between the documentation and a question on a specific programming task because of

different wordings. We observe from Stack Overflow that the best answers to program-

mers’ questions often contain links to formal documentation. In this paper, we propose a

novel deep-learning-to-answer framework, named QDLinker, for answering program-

ming questions with software documentation. QDLinker learns from the large volume

of discussions in community-based question answering site to bridge the semantic gap

between programmers’ questions and software documentation. Specifically, QDLinker

learns question-documentation semantic representation from these question answering

discussions with a four-layer neural network, and incorporates semantic and content

features into a learning-to-rank schema. Our approach does not require manual feature

engineering or external resources to infer the degree of relevance between a question

and documentation. Through extensive experiments, results show that QDLinker ef-

fectively answers programming questions with direct links to software documentation.

QDLinker significantly outperforms the baselines based on traditional retrieval mod-

els and Web search services dedicated for software documentation retrieval. The user

study shows that QDLinker effectively bridges the semantic gap between the intent of

a programming question and the content of software documentation.

∗Corresponding author
Email addresses: jli030@e.ntu.edu.sg (Jing Li), axsun@ntu.edu.sg (Aixin Sun),

zhenchang.xing@anu.edu.au (Zhenchang Xing)

Published at Information Sciences 2018

Keywords: Community-based question answering, Software documentation, Social

context, Neural network

1. Introduction

For most programming languages and software packages, there exist comprehensive

language specifications, Application Programming Interface (API) documentation, and

tutorials. Such official documentation¹ provides information about functionality, struc-

ture, and parameters, but not on specific issues or specific usage scenarios [31, 42]. On5

the other hand, programmers often face very specific issues which are not explicitly

stated in software documentation. For many such issues, software documentation does

serve as a good reference for why the issues happen and how to address them. However,

it is challenging to use a question as a keyword query to search for relevant software doc-

uments. This is because the software documentation and question are often in different10

wordings; one is for generic reference and the other is from a specific usage scenario in

practice.

With the emergence of Web 2.0 in modern software development, the behavior of

developers is changed, in relation to how they search for crowd-generated knowledge

to fulfill their needs [21, 22, 25]. The mismatch between the needs of documenta-15

tion consumers and the knowledge provided, leads to the overwhelming discussions

accumulated at various Community-based Question Answering (CQA) websites such

as Quora² and Stack Overflow³. In these discussions, the community users often refer

to software documentation when answering programming questions. From Stack Over-

flow, we collected 45,288 best answers each contains at least one link to Java official20

documentation. Figure 1 plots the distribution of the number of links to Java documen-

tation per best answer, which obeys a power-law distribution. It shows that 72.6% of

best answers have exactly one link to Java documentation and fewer than 10% havemore

than three links. This distribution suggests that for many Java programming questions,

¹The term ‘software documentation’ refers to the collection of documents consisting of language specification, API

documentation, and official tutorial.
²https://www.quora.com/
³http://stackoverflow.com/

2

Number of Java documentation per best answer
100 101 102 103

N
u
m

b
e
r

o
f
th

e
 b

e
s
t
a

n
s
w

e
rs

100

101

102

103

104

105

Number of Java documentation per best answer

1 2 3 4 5 >5P
e

rc
e

n
ta

g
e

 o
f

th
e

 b
e

s
t

a
n

s
w

e
rs

(%
)

0

20

40

60

80

Figure 1: Distribution of links to Java documentation per best answer, among 45,288 best answers from Stack

Overflow. The absolute numbers are plotted in log scale, and the percentages are plotted in bar chart.

there exists a Java official document as a good reference to address the question. The25

large volume of discussions also create the ‘semantic link’ between programmers’ ques-

tions and software documentation, through the community of programmers, illustrated

in Figure 2.

Posting questions and waiting for answers from other programmers may take much

time. The immediate question is: can we answer a programmer’s question by providing30

a link to the most relevant software documentation? In this research, we aim to build an

answering system where the questions are from programmers in natural language and

the answers are the links to official documentation, illustrated in Figure 2. This system

will provide convenience not only for documentation consumers but also the companies

that provide technical support.35

However, understanding programming questions to build an effective answering

system is not trivial. First of all, mapping question-answer pairs into a discriminative

feature space is a critical step. A widely adopted approach is to encode question-answer

pairs using various features, e.g., lexical, linguistic, and syntactic features [67, 37, 53,

61, 36]. These hand-crafted features may heavily depend on external resources at the40

loss of generality. Besides, many existing knowledge bases are about lexical knowledge

or about open domain facts. A typical example is WordNet [29], a lexical knowledge

3

QDLinker

Context

embedding

QuestionAnswer

Semantic

link

Language specification

API documentation

Tutorial

Programmer

CQA Website

Questions

Answers

Figure 2: Overview of QDLinker. It directly links programmer’s question to formal documentation through

embedding the semantic context in CQA. Before QDLinker, the semantic links between questions and soft-

ware documentation are established through the CQA community.

base for general English language, whichmay not be suitable to build answer systems for

technical questions about programming. As shown by the analysis above, taking the ad-

vantage of neural networks to learn semantic representation of question-documentation45

pair seems to be more appropriate for our task. Neural networks have been proved to be

powerful tools in many fields, such as machine transliteration [7], computer vision [50],

electromagnetic theory [18], wire coating analysis [30], and bioinformatics [40]. Note

that, our task cannot be addressed by search engines for source code [13, 35]. Code

search system cannot well answer queries in natural language, especially when the50

queries do not contain any code snippets or API-like terms.

In this paper, we propose a novel deep-learning-to-answer framework named QDLinker,

to answer programming questions with software documentation through social context

embedding. Social context of a link to software documentation refers to the surrounding

words of the link, when community users use it to answer questions in CQA. QDLinker55

embeds social contexts in a latent space, and uses a four-layer Deep Neural Network

(DNN) to learn semantic representations of question-documentation pairs. The learned

semantic representations and simple content features are then passed to a learning-to-

rank schema to train a ranker. Compared to prior work on software text retrieval [67],

our approach does not require manual feature engineering or hand-coded resources be-60

4

yond the pre-trained word vectors. The architecture we proposed is beneficial not only

to learn a ranker in training phase, but also to automatic feature extraction for the new-

coming query-documentation pairs in online phase. Moreover, our approach takes into

account documentation content and social context simultaneously, for its effectiveness

in bridging the semantic gap between programming questions and software documen-65

tation.

We conducted extensive experiments on Stack Overflow dataset to evaluate the ef-

fectiveness of QDLinker. Empirical results show that QDLinker outperforms three

baseline methods which are based on traditional retrieval models. Through a user study

with 25 natural language queries collected from test dataset, we show that QDLinker70

significantly outperforms a commercial search engine. In short, our empirical results

show that QDLinker can effectively bridge the semantic gap between questions and

software documentation. In this paper, we make the following contributions:

• We propose QDLinker, a novel framework for answering programming questions

with software documentation through social context embedding. It leverages the75

content in official sites and social contexts in CQA to learn semantic represen-

tations of question-documentation pairs and answers programming questions in

natural language.

• We conduct a large-scale automatic evaluation, to evaluate the performance of

QDLinker against three baseline methods. The empirical evaluation reveals that80

our approach can effectively answer Java technical questions against the tradi-

tional retrieval models.

• We conduct a user study to compare the software documentation retrieval per-

formances of QDLinker and Google search. The results show that QDLinker

significantly outperforms Google search in the retrieval task.85

The remainder of this paper is organized as follows. Section 2 summarizes the re-

lated work. Section 3 details our approach QDLinker. Section 4 presents the empirical

evaluation. Section 5 presents the user study. Finally, we conclude the paper in Sec-

tion 6.

5

2. Related Work90

Question Retrieval. Question retrieval has attracted much attention in recent years [4,

8, 16, 10]. Different retrieval models have been employed in the task, including the

Okapi model [16], the translation model [63], the language model [8], and the vector

spacemodel [16, 17]. In addition, question category information has also been exploited

for question retrieval [4]. Xue et al. [57] proposed a translation-based language model95

that combines the translation model and the language model for question retrieval. Yen

et al. [61] developed a question classifier, which is trained to categorize the answer

type of a given question and instructs the context-ranking model to re-rank the passages

retrieved from the initial retrievers.

For the word mismatch problem among similar questions, existing solutions can be100

broadly grouped into three approaches to bridge the lexical gap. One approach is to use

manual rules or templates. For example, Berger et al. [2] proposed a statistical lexicon

correlation method to bridge the lexical chasm. The second approach is to use external

knowledge databases such as Wikipedia and WordNet. The method by Zhou et al. [65]

using semantic relations extracted from Wikipedia for question retrieval is an example.105

Burke et al. [3] proposed a model to rank frequently asked questions using combined

similarities. The similarities are computed by conventional vector space models with

semantic similarities based on WordNet. The third approach is to use deep representa-

tion. Zhou et al. [64, 66] proposed a neural network architecture to learn the semantic

representations of question-answer pairs. Nassif et al. [33] presented a neural-based110

model with stacked bidirectional Long Short-Term Memory (LSTM) and Multi-Layer

Perceptron (MLP) for similar question retrieval. Different from the prior studies, we

aim to directly link questions to their relevant software documents, rather than retriev-

ing similar questions.

Answer Selection. Given a thread containing a question and a list of answers, many115

studies aim to automatically rank the answers according to their relevance to the ques-

tion [49, 44, 51]. Sun et al. [49] used dependency relations between the matched ques-

tion terms and the answer target as additional evidences to rank passages. Sakai et

al. [44] proposed an approach to build answer selection system involving multiple an-

6

swer assessors and graded-relevance information retrieval metrics. Yao et al. [60] pro-120

posed a family of algorithms to jointly detect the high-quality questions, and to help

users to identify a useful answer that would gain much positive feedback from site users.

Hou et al. [15] and Nicosia et al. [34] proposed automatic answer selection algorithms

based on the position of the answer in the thread and the context of an answer in a thread,

respectively. Instead of selecting answers, in our task, we attempt to distill the software125

documentation in answers.

CQA Semantic Representation. Most relevant to our work is the study on semantic

representation of CQA. In recent years, deep neural networks have been used to learn

higher-level semantic representations of question-answer pairs [46, 33, 47, 9, 23]. Tan et

al. [52] developed hybridmodels tomatch passage answers to questions accommodating130

their complex semantic relations. Severyn et al. [46] proposed a convolutional neural

network architecture, which maps queries and documents to their distributed vectors,

for reranking pairs of short texts. Yan et al. [58] proposed a deep neural network to learn

how a query and its context are related to candidate reply. Nassif et al. [33] presented

a neural-based model with stacked bidirectional LSTMs and MLP to learn semantic135

relatedness between questions and answers. Singh et al. [48] proposed a system using

semantic keyword search in combination with traditional text search techniques to find

similar questions with answers for unanswered questions.

Social Context. Yang et al. [59] investigated user preference and social contexts in

point of interest (POI) recommendation. They developed a deep neural architecture140

that jointly learns the embeddings of users and POIs to predict both user preference

and POIs. Bagci et al. [1] built a graph model of location-based social networks (LB-

SNs) for personalized recommendations. This graph model took into account social

contexts such as current social relations, personal preferences and current location of

the user. Li et al. [26] proposed WisLinker framework to recommend web resources145

using social contexts. Rohani et al. [43, 11] proposed an approach to address cold-start

problem in academic social networks by incorporating social context features. Coined

as an enhanced content-based algorithm using social networking (ECSN), the proposed

algorithm considers the submitted ratings of faculty mates and friends besides user’s

7

!

"

 !"#$$#$%

$&'(!#)*+*,&)

 !"!#$%&'#()''*+%&),-#-).%/0

 !"#$$#$%
:(#0*,&)

-&.$%/#'*&.0 '&)/&1(*,&)+1%1+2#. !+3%4&&1,)5 6&,)%1+2#. 7,$$#)%1+2#. 0&8*!+3

9+*(.+1%1+)5(+5#%

:(#0*,&)

;+)$,$+*#%$&'(!#)*+*,&)%5#)#.+*,&)

 !"#$%&#"%$'()*(

 !".#$ &#"%$'()*(

 !"+$%,-)'("%$'()'(

!"

;&)*#)*%8#+*(.#0%

#

 !

"

$%&"$

'&##("
$

#
!

#
"

<"0*.+'*%=#4.#0#)*+*,&)

5!,4*.
/0&1'1'."21&"

#)&0'1'."($"0&'3

4,($-&(1%"5)&(,0)")'.1'))01'.

 !"#

 !"$

##

 !"%

$55#1') $'#1')

Figure 3: The architecture of our proposed approach. Offline phase aims to learn abstract representation for

question-documentation pair, and to learn a ranker with the abstract representations. Given a new question,

online phase aims to rank its candiate documents.

own preferences. Rohani et al. [43] proposed an approach to solve cold-start problem150

by incorporating social context features.

In our proposed QDLinker, we learn the semantic representations of programming

questions and the social contexts of software documentation. In our case, the social

contexts, i.e., how the APIs are used in different scenarios, cannot be obtained through

the content of software documentation itself.155

3. Deep Learning to Answer

In this section, we first give an overview of the proposed framework QDLinker,

and then detail the core modules in QDLinker in Sections 3.2 - 3.4. The input to the

framework, i.e., the word embedding, is presented in Section 3.1.

As shown in Figure 3, the QDLinker framework consists of three core modules:160

candidate documentation generation, a four-layer neural network, and learning a ranker.

Given a programming question in natural language, candidate documentation genera-

tion returns a small set of software documents which are considered relevant to the ques-

tion. The DNN module learns the semantic representations of query-documentation

pairs in a latent space, and generates latent features for the ranker module. The features165

by DNN are fully automatic without human intervention. Nevertheless, the network

does allow handcrafted features to be inserted in the join layer, illustrated in Figure 3.

8

The learned features are then fed to a learning-to-rank schema to train a ranker, to pick

up relatively relevant software documents among the candidates. Note that our approach

cannot be formulated as an end-to-end problem (i.e., directly minimizing a ranking cost170

function) because we need to automatically extract query-documentation representa-

tions for newcoming candidate documents in online phase. Thus, the DNN only serves

as extracting the final representations of query-documentation pairs. Therefore, the ar-

chitecture in Figure 3 is beneficial not only to learn a ranker in training phase, but also to

automatic feature extraction for newcoming query-documentation pairs in online phase.175

3.1. Social Context Embedding

As shown in Figure 3, QDLinker is built on pre-trained word vectors, or word em-

beddings. Traditionally, language models represent each word as a feature vector us-

ing one-hot representation, where a vector element is 1 if the word is observed and

0 otherwise [12]. Recently, neural language models have been proposed to generate180

low-dimensional, distributed embeddings of words [6, 54]. These models take the ad-

vantage of word order in text documents and capture both syntactic and semantic rela-

tionships between words. Mikolov’s continuous bag-of-words and skip-gram language

models [27, 28] are among the most widely used models.

Stack Overflow is a destination with rich source of information about API usages185

and bug descriptions. Thus, in our implementation, we use the crowd-generated content

on Stack Overflow to learn embeddings of words and links to software documentation.

As shown in Figure 4, a community user of Stack Overflow created a link to API

documentation java.util.Collections.sort() in an answer. Figure 4 illustrates

the training procedure with the skip-grammodel when it reaches the link. This sentence190

creates a context for the link java.util.Collections.sort() through the surround-

ing words. We build two vocabularies: one for English words, and the other for links

to software documentation. In simple words, each link to software documentation is

treated as an ordinary term in the word sequence, and a word vector is learned for each

link that is mentioned on Stack Overflow. Note that, we learn word embedding for each195

link as a term, and the words in the anchor text of the link are not used in our training.

We define that wt is the only word on the input layer. N is the hidden layer size. V

9

Figure 4: Training word embedding example with the skip-gram model.

is the vocabulary size. C is the number of words in the context. xxx ∈ RV is the one-hot

encoded vector for wt , which means only one out ofV units will be 1 and all other units

are 0. The output of hidden layer can be written as

hhh =WWW T xxx =VVV T
wt (1)

where WWW ∈ RV×N is the input-hidden weight matrix. VVV wt is the vector representation

of the input word wt .

On the output layer, each output is computed using the hidden-output matrix:

p
(

wc, j = wO,c
∣∣wt

)
=

exp(uc, j)

∑V
j′=1 exp

(
u j′

) (2)

where wt is the input word. wc, j is the j-th word on the c-th panel of the output layer.

wO,c is the actual c-th word in the output context word. uc, j is the net input of the j-th

unit on the c-th panel of the output layer,

uc, j =VVV ′′′Tw j
·hhh, f or c = 1,2, ...,C (3)

where VVV ′′′Tw j
is the output vector of the j-th word in the vocabulary, w j and VVV ′′′Tw j

is taken

from a column of the hidden-output weight matrix, WWW ′′′.200

When training the skip-gram model to predict C context words, the loss function is

written as

E =− log p(wO,1,wO,2, ...,wO,C|wt)

=− log
C

∏
c=1

exp
(
uc, j∗c

)
∑V

j′=1 exp
(
u j′

) (4)

10

-600 -400 -200 0 200 400 600 800
-600

-400

-200

0

200

400

600

arraylist

java.util.ArrayList

linkedhashmap

java.util.LinkedHashMap

java.io.FileOutputStream

java.io.StringReader

stringreader

resizeable

collection
addlast

insertion

hashmap keyset

javax.swing.JFrame

modalitytypes

javax.swing.JDialog

jframe

jpanel

java.awt.BorderLayout

javax.xml.parsers.DocumentBuilder.parse()

java.awt.Window.pack()

java.math.BigDecimal.compareTo()

java.lang.Double.compare()

java.lang.Comparable.compareTo()

orderings
java.util.Data.compareTo()

compareto

pushbackreader

Figure 5: A 2D projection of embedding natural language terms and API documentation using PCA (API

documentation in bold font and natural language terms in non-bold font).

where j∗c is the index of the actual c-th output context word in the vocabulary.

Figure 5 illustrates a 2-D projection of vectors of natural language terms and API

documentation using principal component analysis (PCA). In the embedding space, the

vectors of terms and API documentation with the same intent have the shortest distance.

For example, the term “arraylist” is close toAPI documentation java.util.Arraylist.205

API documentation java.awt.Window.pack() is close to java.swing.JFrame. Ob-

serve that there are four clusters in Figure 5: java I/O, java.awt layout, java collection,

and java compareto. For intra-cluster instances, they have similar programming func-

tion or purpose.

3.2. Candidate Documentation Generation210

Given a programming question as a query, candidate generation selects a subset of

software documents that are relevant to the question. We use three methods to select

candidates.

Document Content. The content of software documentation reflects its relevance to

a given query. In our implementation, we build a search engine for software docu-215

mentation using Apache Lucene. Specifically, stopword removal and stemming are

11

performed as preprocessing, and for each query, the search engine returns top 10 most

relevant results based on the BM25 scoring function.

Local Context. Stack Overflow is a popular CQA site where developers ask questions

and share knowledge about software development and maintenance. The discussions220

on Stack Overflow provide enriching context to mine usage scenarios of software doc-

umentation. When a software document appears in a discussion thread, its surround

texts reflect its relevance to the question.

DEFINITION 1 (Local Context). If a software document is mentioned in a best answer,

the texts of the question (title and body) and the best answer are regarded as the local225

context of the software document.

Local context is defined based on the consideration that the quality of best answer

is better than other answers in the discussion thread, to avoid including too much noise.

The body of the best answer is the immediate context where a software document is

mentioned. On the other hand, question title and body often describe the programming230

issues and reflect the relevance between the problem and the software documentation

mentioned in its best answer.

Note that, each mention of a software document has its own local context. If a

software document is mentioned multiple times, multiple local contexts are extracted.

We collect all local contexts of the mentioned software documents in our corpus. Given235

a query, we use Lucene to retrieve the most relevant local contexts, then pick the top 10

unique software documents as candidates.

Global Context. As aforementioned, a software document may be mentioned in multi-

ple best answers and hasmultiple pieces of local contexts. For example, java.util.ArrayList

was mentioned 906 times in our dataset.240

DEFINITION 2 (Global Context). The global context of a software document is the col-

lection of all its local contexts.

We build up a corpus through collecting global contexts for all software documents.

Then we obtain the vector of a software document by social context embedding de-

scribed in Section 3.1. Following [55], we use bag-of-words model to average out the245

12

vectors of the individual words in a query. Given a query, we retrieve top 10 software

documents based on the cosine similarity between the average vector and software doc-

umentation vector.

3.3. Four-layer Deep Neural Network

Deep neural network with multiple layers has demonstrated its effectiveness in cap-250

turing semantical and higher-level discriminative information from the input data [24].

As shown in Figure 3, our DNN has four layers: convolutional layer, join layer, hidden

layer, and output layer.

3.3.1. Convolutional Layer

For a natural language query with many words in a sentence, prior studies [62, 19]255

have shown that the simple bag-of-words model is unable to capture complex semantics

of a sentence. Convolutional neural network can capture long-range dependencies and

learn to correspond to the internal syntactic structure of sentences. Thus, we use one

convolutional layer as the first layer in our approach.

Convolution Operation. Let XXXd and XXXq be the software documentation vector and

query vector, respectively. Suppose that there are s words in the query and let XXX i
q ∈

Rk be the i-th k-dimensional word vector corresponding to the i-th word in the query.

More formally, the convolution operation ∗ between two vectors XXXq ∈Rsk and fff q ∈Rmk

(called a filter of size m) results in a vector cccq ∈ Rs−m+1 where each component is as

follows:

c j
q = (XXXq ∗ fff q) j = fff T

q ·XXX
[j: j+m−1]
q +bqc (5)

where j = 1, ...,s−m+1 and XXX [j: j+m−1]
q represents the concatenation of word vectors

XXX j
q,XXX

j+1
q , ...,XXX j+m−1

q , bqc ∈ R is a bias term. Thus, this filter fff q is applied to each

possible window of words in the query to produce a feature map:

cccq = [c1
q,c

2
q, ...,c

s−m+1
q] (6)

where cccq ∈Rs−m+1. Similarly, we can utilize filter fff d to produce documentation feature260

map cccd .

13

So far we have described the convolution layer with a single filter. Ourmodel applies

a set of filters that work in parallel to generate multiple feature maps. Let n be the

number of filters. Given filters FFFn×mk
q and FFFn×mk

d , the convolution operations produce

two feature maps CCCq ∈ Rn×(s−m+1) and CCCd ∈ Rn×(s−m+1), respectively.265

Activation Function. To allow the neural network to learn non-linear decision bound-

aries, each convolutional layer is followed by a non-linear activation function applied

element-wise to the output of the convolution operations. Sigmoid, hyperbolic tangent

tanh, and a rectifiled linear (ReLU) are among the most common choices for activation

functions. In particular, it is reported that recified linear unit has significant benefits270

over sigmoid and tanh functions [32]. Thus, in our implementation, we use ReLU as

the activation function. The output of activation layer can be written as

AAAq = ReLU(CCCq) = max(0,CCCq) (7)

AAAd = ReLU(CCCd) = max(0,CCCd) (8)

where AAAq ∈ Rn×(s−m+1) and AAAd ∈ Rn×(s−m+1).

Pooling. The output from activation function is then passed to the pooling layer, whose

goal is to aggregate the information and reduce the representation. As mentioned above,

there are n filters. The pooling operation is applied on every filter. Taking the pooling

of AAAq ∈ Rn×(s−m+1) as an example, the output of pooling PPPq ∈ Rn can be written as

PPPq =

pool

(
AAA1

q
)

· · ·

pool
(
AAAn

q
)
 (9)

The pooling operation maps the feature map to a single value, formally: pool(AAAi
q) :

R1×(s−m+1) → PPPi
q : R. There are a few common choices for the pool() operations:275

average, max and L2-norm. Average pooling was often used in the past but has recently

fallen out of favor compared to the max pooling operation, which has been shown to

work better in practice. In our approach, we use 1-max pooling strategy, which extracts

a scalar with the maximum value for each feature map.

14

3.3.2. Join Layer280

Inspired by [62, 46], we also add simple content features fff cn to our model. fff cn con-

tains two word overlap features: word overlap count, and word overlap count weighted

by IDF (inverse document frequency). Note that both features do not require any lin-

guistic annotation or pre-processing. The output of join layer XXX join ∈ R2n+2 can be

expressed as follows:

XXX join = [PPPd ;PPPq; fff cn] (10)

3.3.3. Hidden Layer

DNNs could use the intermediate layers to build up multiple layers of abstraction.

These multiple layers of abstraction seem likely to give deep networks a compelling

advantage in learning to solve complex pattern recognition problems [45]. In our ar-

chitecture, the hidden layer is a fully-connected layer with parameters WWW h and bbb. The

output of hidden layer can be represented as

XXXhidden = ReLU(WWW h ·XXX join +bbbh) (11)

3.3.4. Output Layer

The output of hidden layer XXXhidden is passed to a fully connected softmax layer. It

computes the probability distribution over the class labels:

p(y = j|XXXhidden;WWW s,bbbs) = so f tmax j(WWW s ·XXXhidden +bbbs) (12)

where WWW s and bbbs are the weight vector and the bias of softmax classifier, respectively.

Our model is trained to minimize the cross-entropy cost function:

L =−log
N

∏
i=1

p(yi|XXX i
q,XXX

i
d)+λ ∥θ∥2

2 (13)

where θ contains all parameters and we use L2-norm regularization.

θ =
{

FFFq,bbbqc,FFFd ,bbbdc,WWW h,bbbh,WWW s,bbbs
}

(14)

In our problem setting, for a given question-documentation pair as an input instance,

softmax layer outputs probabilities for two classification labels: positive and negative.

Figure 6 shows an example of question-documentation pair extracted from discussions285

15

Figure 6: An example of extracting query-documentation pair from discussion thread on Stack Overflow.

on Stack Overflow. Together with the question, each link to documentation mentioned

in the question’s best answer forms a positive question-documentation pair instance.

For training the DNN, we use the links from the best answers of the training ques-

tions to form positive instances, and use randomly selected links to form negative in-

stances. We use backpropogation algorithm to compute the gradients and use Adam290

update rule [20] to update the parameters of the network. To mitigate the overfitting

issue, we augment the cost function with L2-norm regularization for the parameters of

the network.

3.4. Learning a Ranker

In particular, XXXhidden can be thought of as a final abstract representation of a query-295

documentation pair, obtained by a series of transformations from the input layer through

a series of layers. In our approach, we consider XXXhidden as features to feed to a learning-

to-rank schema. The learning-to-rank schema can leverage multiple features for ranking

and can automatically learn the optimal way of combining these features.

Our goal is to build a ranking model which facilitates each query q and its candidate

list D = {d1,d2, ...,dn} to generate the optimal ranking. More formally, the task is to

16

()*%'%'+,$-",.&!)/0*1"),'"!)*0,
'"$2&)3,%',4"5$%&',676

 !"#$,.&),*8#$)*5$,
)"9)"#"'$*$%&'

:,'"2,;!"#$%&'

<*'=%=*$",=&5!>"'$,+"'")*$%&',
8*#"=,&',4"5$%&',67?

@"*$!)","A$)*5$%&',2%$-,0"*)'"=,>&="0

 !"#$,.&),)*'3%'+,
#&.$2*)",=&5!>"'$#

B*'3%'+,2%$-,0"*)'"=,)*'3")

@"*$!)","A$)*5$%&',2%$-,0"*)'"=,>&="0

()*%'%'+,*,)*'3"),2%$-,
C*>8=*D:B(,)*'3%'+,#1#$">

(&9, ,#&.$2*)",=&5!>"'$#

&..0%'" &'0%'"
4$*)$EF'= D&="0

G)&5"##

 !"#$%&'# 4&.$2*)",
=&5!>"'$#

4&.$2*)",
=&5!>"'$#,%',
8"#$,*'#2") !"#$%&'# H$-"),

=&5!>"'$#

G&#%$%I",9*%)#
4&.$2*)",=&5!>"'$#

 !"#$%&',

5-*''"0
J&5!>"'$,
5-*''"0

K"+*$%I",9*%)#

J*$*

Figure 7: The flow diagram of the proposed QDLinker. The middle part is to learn a model for extracting

abstract representation for question-documentation pair. The left part aims to learn a ranker. The right part

is to answer a new question with the learned models.

learn a scoring function F (q,d):

F (q,d) =
K

∑
k=1

ωi ·ϕi (q,d) (15)

where each feature ϕi (q,d)∈XXXhidden measures a specific relationship between the query300

and a candidate software document. ωi is the weight of the i-th feature (among the total

K features), and is learned during the training process. In our task, the optimization pro-

cedure of learning-to-rank tries to find the scoring function that ranks the most relevant

software document to the query at the top among all candidates. We train the ranking

model using LambdaMART [56], a boosted tree version of LambdaRank [38], that won305

the Yahoo! Learning to Rank Challenge.

3.5. Summary and Complexity Analysis

To summarize, we present a flow diagram of QDLinker in Figure 7 and the pseu-

docode in Algorithm 1 and Algorithm 2. Observe from Figure 7, our framework con-

tains both offline phase and online phase. The offline phase first learns abstract repre-310

sentation of question-documentation pair and then learns a ranker based on the positive

and negative instances. Here an instance is a question-documentation pair. The offline

17

Algorithm 1: Pseudocode for offline phase of the proposed QDLinker
Input: N training instances of question-document pairs

Output: Feature vector function Vθ (q,d) and ranking function F

// Phase 1: Learning abstract representation

1 Initialize all parameters θ ;

2 foreach epoch in epochmax do // iterate through epoches

3 Sample a minin-batch from N pairs;

4 Clear gradients dθ ← 0;

5 Computing L based on Equation (13);

6 Update θ ← θ − ∂L
∂θ · lr ;

7 return Vθ (q,d) ; // return feature vector function for q-d pair

// Phase 2: Learning a ranker

8 Set number of trees M, number of leaves per tree L;

9 foreach m in M do // iterate trees

10 foreach n in N do // iterate through training pairs

11 Calculating feature vector for current n via Vθ (q,d) in Phase 1;

12 Calculating the λ -gradients for each q-d pair; // more detials[56]

13 Calculating the second-order derivative using the λ -gradients;

14 Building a regreesion tree with L terminal nodes;

15 Update F function;

16 return F ; // Final ranking function F

phase is listed in Algorithm 1. Given a new question, the online phase first generates

the k candidate software documents based on Section 3.2. Then these documents are

ranked by the learned models in offline phase. Accordingly, the online phase is listed315

in Algorithm 2.

We first detail the parameter size of our framework, then deduce the time and space

complexity. Equations (14) and (15) show all parameters that QDLinker would learn.

Now we consider one query-document pair as shown in Figure 3. For convolutional

layer, QDLinker has 2n×mk+ 2n parameters, where n is the number of filters and m320

is the window size of each filter, k is the dimension of word embedding, and number

2 indicates query channel and document channel. For join layer, there is no parameter.

For hidden layer, there are (2n+2)×h+h parameters, where h is the number of neruons

in hidden layer. For output layer, there are h×2+2 parameters. For ranker layer, there

are h weights because QDLinker uses the XXXhidden as the final abstract representation.325

Given a new question, we assume that QDLinker generates κ candidate software

18

Algorithm 2: Pseudocode for online phase of the proposed QDLinker
Input: A new question qnew

Output: top-k software documents

1 Retrieving candidate documents for qnew based on Section 3.2;

2 Extracting features for these question-document pairs using Vθ (q,d) in Phase 1 of Algorithm 1;

3 Ranking these candidate documents using F in Phase 2 of Algorithm 1;

4 return top-k software documents ; // Answers to the issued question

documents. Now considering a question-documentation pair, the total time and space

complexity of convolutional layer are both O(α ·m2 ·β) [5, 14], where α and β are the

number of input nodes and the number of output nodes respectively, m is the window

size of each filter. Hidden layer and output layer are fully connected layers. The time330

and space complexity of this linear projection are both O(αβ). For the ranker, the time

complexity is O(κ2) [56]. Thus, the time complexity of QDLinker is O(καm2β +κ2),

and the space complexity is O(αm2β).

4. Empirical Evaluation

We now evaluate the effectiveness of QDLinker by measuring its accuracy on link-335

ing questions on Stack Overflow to software documentation. Our evaluation assumes

that the software documentation mentioned in a question’s best answer is the most rel-

evant to the question.

4.1. Experimental Setting

Data Collection. In our evaluation, we focus on Java software documentation which340

consists of Java Standard Edition API documentation, Java tutorials, and language spec-

ifications. Usually, a programming question is expressed in natural language thus it is

similar to the discussions on Stack Overflow. We therefore use the data collected from

Stack Overflow in our experiments.

We extract discussion threads from the datadump archive⁴ that satisfy the following345

criteria: (i) The score of question is greater than 0. This condition guarantees that at

⁴https://archive.org/details/stackexchange

19

Table 1: Summary of the number of threads used in each task.

Data #Discussion threads

Word embeddings 24,217

Train 10,649

Development 1,000

Test 1,693

least one developer has voted the question to be a ‘useful question’. (ii) The question

has an answer which is accepted as the best answer, and the score of the best answer is

greater than 0, and (iii) The best answer must contain at least one link to the above listed

Java documentation. Based on the above criteria, we collect 30,272 discussion threads350

from the data dump released on August 2015. We randomly select 24,217 discussion

threads (account for 80%) as training data and the remaining 6,055 threads (account for

20%) as test data.

Model Training. We learn word embeddings from the training data, i.e., the 24,217

discussion threads. For each discussion thread, we extract text from question title, ques-355

tion body, and all answers whose scores are greater than 0. We use the skip-grammodel

implemented in word2vec⁵. The context window size is set to 10 and the minimal word

frequency is 5. Recall that each link to a software document is also treated as a word

(or term, see Figure 4). Based on this condition, we have 1,520 distinct links to Java

documentation in the training data.360

Next is to train the DNN and the ranker. Note that some discussion threads cannot

be used to extract query-documentation pairs for training DNN because the links to soft-

ware documentation in best answers are filtered out when the minimal word frequency

is set to 5. Finally, we have 10,649 discussion threads for training DNN and the ranker,

1,000 discussion threads used for development set, and 1,693 discussion threads used365

for test. Table 1 summarizes the dataset in our experiments.

We empirically set the hyperparameters based on the development set. The number

⁵https://code.google.com/archive/p/word2vec/

20

of filters in convolutional layer is 64, and the size of filter is set to 2. The size of hidden

layer is set to 64. The dimensionality of pre-trained word vectors is 200. L2-norm term

is set to 1e−5 and the learning rate is 1e−3.370

Performance Measures. We use the following five performance metrics in our evalu-

ation:

• Precision at k, P@k = |Dk∩Dg|
k , is the fraction of relevant documentation links to

the query question among the top k ranked results. Dk denotes the set of top-k

ranked links to software documentation and Dg is the set of ground-truth links375

(i.e., links to software documentation in the question’s best answer).

• Recall at k, R@k =
|Dk∩Dg|
|Dg| is the fraction of ground-truth links in the top-k re-

sults.

• Hit rate at k, denoted by HR@k, is 1 if
∣∣Dk ∩Dg

∣∣> 0 and 0 otherwise.

• Mean average precision, MAP, is the mean of average precision (AP) over a set380

of test queries.

• Mean reciprocal rank, MRR(Q) = 1
|Q|

|Q|
∑
j=1

1
rank j

, is the average reciprocal rank of

the results over a set of test queries Q. In the equation, rank j denotes the rank

position of the first relevant document for the j-th test query.

Baseline Methods. In order to validate the effectiveness of the proposed method, we385

evaluate the following three baseline methods in our experiments.

• OfficialCn: This is the baseline model which selects candidate software docu-

mentation by content (see Section 3.2). BM25 [41] scoring function is used to

rank the candidates.

• LocalCx: This baseline ranks candidates based on local context (see Section 3.2).390

This model indexes the local contexts in discussion threads and retrieves candi-

dates using BM25 scoring function.

21

Table 2: Performance (P@k,R@k,MAP and MRR) for different methods. The best performance is high-

lighted in bold face. † indicates that the differences between the result of QDLinker and other models are

statistically significant with p < 0.05 under t-test.
Method P@1 P@2 P@5 P@10 R@1 R@2 R@5 R@10 MAP MRR

OfficialCn 0.1347 0.1087 0.0749 0.0511 0.1147 0.1797 0.3053 0.4108 0.2234 0.2267

LocalCx 0.1630 0.1337 0.0932 0.0657 0.1401 0.2253 0.3876 0.5361 0.2896 0.2956

GlobalCx 0.1536 0.1234 0.0875 0.0628 0.1300 0.2002 0.3548 0.5005 0.2564 0.2614

QDLinker 0.1875† 0.1576† 0.1272† 0.0919† 0.1708† 0.2734† 0.5012† 0.6847† 0.3461† 0.3584†

Table 3: Performance(HR@k) for different methods.
Method HR@1 HR@2 HR@5 HR@10

OfficialCn 0.1347 0.2069 0.3491 0.4663

LocalCx 0.1630 0.2631 0.4341 0.5914

GlobalCx 0.1536 0.2383 0.4109 0.5640

QDLinker 0.1875† 0.3057† 0.5828† 0.8128†

• GlobalCx: This baseline ranks candidates based on global context (see Section

3.2). This model represents natural language words and software documentation

as vectors in shared embedding space [27].395

4.2. Performance Comparison

Table 2 and Table 3 report the linking performance by different methods on all eval-

uation metrics. From the results, QDLinker significantly outperforms all baselines on

all metrics. The improvement is statistically significant based on t-test with p < 0.05.

Observe that P@10 is very small for all methods including QDLinker. On Stack Over-400

flow, more than 70% of the best answers contain only one link to software documenta-

tion (reported in Section 1, Figure 1). As the result,
∣∣D10∩Dg

∣∣= 1 in most cases. Thus,

the ideal value of P@10 is slightly above 0.1, QDLinker achieves a very good result of

0.0919 in this sense. On R@k measure, QDLinker significantly outperforms the other

baselines for all k values (k = 1,2,5,10). It is worth noting that QDLinker achieves405

the highest recall (0.6847) when k = 10. In terms of MAP measure, QDLinker outper-

forms the three baseline methods OfficialCn, LocalCx and GlobalCx by 34.98%, 19.51%

and 54.93%, respectively. On MRR measure, QDLinker outperforms the three base-

lines by 37.11%, 21.24% and 58.09%, respectively. Similar observations hold on hit

rate measure HR@k, reported in Table 3.410

22

Table 4: Results on additional content features.
Content features MAP MRR

Without fff cccnnn features 0.3054 0.3102

With fff cccnnn features 0.3461(↑ 13.32%) 0.3584(↑ 15.53%)

Observe from the results that the content-based method OfficialCn delivers the worst

performance on all measures. This implies that content-based approach cannot bridge

developers’ intent and content of software documentation. This observation is consis-

tent with our description in Section 1 that software documentation is prepared to give

comprehensive coverage without targeting on specific problems, while the program-415

ming questions are encountered in specific programming tasks. Therefore, it is essen-

tial to utilize the social context available on Stack Overflow to bridge the semantic gap

between programmers’ questions and software documentation.

4.3. Impacts of Factors on Performance

4.3.1. Impact of content features420

In our approach, fff cn consists of word overlap count andword overlap count weighted

by IDF value. Table 4 shows the performance and improvement of considering ad-

ditional content features fff cn. More specifically, considering fff cn improves MAP by

13.32%, and MRR by 15.53%.

There are two aspects resulting in the improvement. First, as described above, input425

of our approach are the pre-trained word vectors. In fact, the word dictionary of our

dataset may not cover all the words in English language. The overlap features can pro-

vide supplementary information in our approach. Additionally, one of the weaknesses

of approaches relying on distributed word vectors is their inability to deal with numbers

and proper nouns [62, 46]. But when developers issue natural language queries, most430

of the questions are of type “what”, “when”, “who” that are looking for answers con-

taining numbers or proper nouns. Thus, the model with fff cn features outperforms the

one without fff cn features on MAP and MRR.

23

Word dimension

50 100 200 300 400 500 600

M
e
a
s
u
re

 v
a
lu

e

0.25

0.3

0.35

0.4

0.45

MRR

MAP

Figure 8: Impact of dimensionality of word embedding.

4.3.2. Dimensionality of word embedding

QDLinker takes in pre-trained word vectors in the input layer and feeds into the435

convolutional layer. We vary the dimensionality of word embedding and evaluate its

impact on MAP and MRR. Figure 8 reports the performance of QDLinker using word

embedding in different dimensions (50, 100, 200, 300, 400, 500 and 600). The results

indicate that the dimensionality of word embedding has very marginal impact on the

performance.440

One possible reason is that the distributedword vectors varying different dimensions

contain enough latent information for building a ranker in our dataset. Thus, when

training a ranker, our approach is stable for different dimensions of word embedding.

4.3.3. Impact of layer sizes

As shown in Figure 3, out architecture needs to set the number of neurons (i.e., layer445

size) in convolutional layer and hidden layer. Figure 9 shows the impact of setting dif-

ferent convolutional layer sizes and hidden layer sizes, on the test set. The comparison

is based on 200 dimensions of word vectors.

We observe that the performance of ranker greatly depends on the combination of

convolutional layer size and hidden layer size. In our dataset, we obtain the best perfor-450

mance when the convolutional layer size and hidden layer size are both 64.

When the combination layer sizes are small, the MAP is around 0.2 only, much lower

than the best performance. Too few neurons in the convolutional and hidden layers will

result in underfitting, as the neurons cannot capture enough signals to model complex

24

512

Hidden layer size

256
128

64
32

16
16

32

Convolutional layer size

64

128

256

512

0.2

0.3

0.4

0.1

0

M
A

P

0

0.05

0.1

0.15

0.2

0.25

0.3

Figure 9: Performance in MAP with different layer sizes.

data. However, larger combination layer sizes does not lead to better ranker performance455

either. In addition, a large number of neurons in the convolutional and hidden layers

increase the training time.

In summary, dimensionality of word vectors has very marginal impact on the perfor-

mance. However, the sizes of convolutional and hidden layers have significant impact

on the performance of our model.460

5. User Study

To the best of our knowledge, there is no existing work on answering programming

questions in natural language. Commercial search engines, e.g., Google and Bing, are

tools for daily use in software development. It naturally motivates us to compare the

returned results with such search engines. If we can improve the performance of search465

results on the search engines, it will provide convenience not only for developers but

also for the companies that provide documentation support.

In the previous set of experiments, we consider the software documentation men-

tioned in the best answers as the ground truth to questions. This assumption may ignore

the other retrieved software documentation which is relevant to the question but is not470

25

mentioned in the best answers. That is, although limiting documentation mention in

best answer is a good criterion to control the quality of ground truth, the criterion may

exclude the relevant results from our evaluation. In this section, we perform a user study

to manually evaluate performance of QDLinker against Web search services.

5.1. Evaluation Setup475

From the test dataset, we randomly select 25 discussion threads and query QDLinker

using their questions. The 25 questions are listed in Table 5. For each question, we

also use Google search engine to retrieve a list of software documentation. Because

we focus on official documentation in this study, we restrict the retrieved results by

Google by setting the “site” parameter in the search. For example, the second query in480

Table 5 is extended as“XML string parsing in Java site:docs.oracle.com/javase” using

Google search engine in August, 2016. Note that, all the three types of Java documenta-

tion (language specification, API documentation, and tutorial) are under the same site:

docs.oracle.com/javase.

To measure the performance of QDLinker and Google, we use three metrics [13,485

39]. FR is the rank of the first relevant result, as most users scan the results from top to

bottom. The smaller the number of FR, the better the performance. The P@5 denotes

the precision of the top 5 ranked results. Note that, the judgements of relevance are

manually labeled by our annotators. Similarly, the P@10 is the precision of the top 10

ranked results.490

We recruited two developers to manually annotate the two set of results fromGoogle

and QDLinker, respectively. Each link to software documentation in result list was

marked relevant or irrelevant, indicating whether the developer considered this software

documentation is relevant to the question. The annotation was done individually by the

two developers and for inconsistent judgments, the two developers reached a consensus495

through discussion.

5.2. Evaluation Results

Table 5 shows the performance comparison of Google search and QDLinker. In

particular, the symbol “-” in the second column indicates that there is no relevant soft-

26

Table 5: Human evaluation for Google search and QDLinker (BA: the number of ground truth links in

best answer. FR: the rank of the first relevant documentation. P@5 and P@10: precision of the first 5

and 10 results. “A_” indicates Java API documentatins. “S_” indicates Java language specification. “T_”

indicates Java tutorial. The boldface documentation indicate the ground truth documentation in best answers.

† indicates the differences between QDLinker and Google are significant with p < 0.05 under t-test).
Google Search QDLinker

Query BA FR P@5 P@10 FR P@5 P@10 Top 3 relevant documents by QDLinker

1: java switch error when simplifying code 1 7 0 0.2 1 0.8 0.5 S_Chapter 16. Definite Assignment; T_Branching Statements; S_Chapter 14.11. The switch Statement

2: XML string parsing in Java 1 1 1 0.9 4 0.4 0.3 A_javax.xml.parsers.DocumentBuilder.parse(); A_javax.xml.bind.DatatypeConverter; A_javax.xml.transform.Transformer

3: PLAF can’t change button color 2 1 0.4 0.5 1 0.4 0.3 A_javax.swing.UIManager; T_How to Set the Look and Feel; T_How to Use Color Choosers

4: match generics with mockito 1 1 0.4 0.5 1 0.6 0.7 T_Type Erasure; T_Erasure of Generic Types; T_Erasure of Generic Methods

5: reinitialise transient variable 1 - 0 0 1 0.6 0.7 A_java.io.Serializable; S_Chapter 8.3.2. Initialization of Fields; S_Chapter 14.14. The for Statement

6: write and read multiple byte[] in file 1 2 0.2 0.2 1 0.6 0.5 A_java.io.FileInputStream.read(); A_java.io.FileOutputStream.write(); A_java.io.RandomAccessFile
7: equality of boxed boolean 1 1 0.4 0.5 1 0.6 0.5 S_Chapter 5.1.7. Boxing Conversion; A_java.util.Arrays.equals(); A_java.lang.Object.equals()

8: resetting and copying two dimensional arrays 1 - 0 0 1 0.4 0.4 A_java.lang.System.arraycopy(); T_Arrays; A_java.util.Arrays.copyOf()

9: java standard on result of casting a double to an int 2 1 0.8 0. 6 1 0.8 0.7 S_Chapter 5.1.3. Narrowing Primitive Conversion; A_java.lang.Number; A_java.lang.Double

10: registering and using a custom java.net.URL protocol 5 3 0.2 0.1 1 0.6 0.8 A_java.net.URLConnection; A_java.net.URI; A_java.net.HttpURLConnection

11: why is the protected method not visible 1 1 0.2 0.1 3 0.4 0.5 S_Chapter 5.1.3. Narrowing Primitive Conversion; S_Chapter 5.1.2. Widening Primitive Conversion T_Controlling Access to
Members of a Class;

12: java date formatting ParseException 1 1 0.8 0.6 1 0.6 0.7 A_java.text.SimpleDateFormat; A_java.text.DateFormat.parse(); A_java.text.DateFormat.format()

13: java executor with no ability to queue tasks 2 - 0 0 1 0.8 0.8 A_java.util.concurrent.Executors; A_java.util.concurrent.ThreadPoolExecutor; A_java.util.concurrent.ExecutorService

14: how to replace a jPanel based on user clicks 1 2 0.6 0.5 2 0.4 0.6 T_How to Use CardLayout; T_How to Use the Focus Subsystem; T_How to Write a Mouse Listener

15: ambiguous varargs method call compilation error 1 - 0 0 2 0.4 0.5 S_Chapter 15.12.2. Compile-Time Step 2: Determine Method Signature; A_java.lang.invoke.MethodHandle; S_Chapter

6.6.1. Determining Accessibility

16: why is there no generic type information at run rime 2 1 0.8 0.7 1 0.6 0.6 T_Generic Methods; T_Why Use Generics?; T_Erasure of Generic Types

17: raster format exception (Y+height) 1 4 0.2 0.3 1 0.4 0.4 A_java.awt.image.BufferedImage; A_javax.imageio.ImageIO; T_Lesson: Working with Images

18: rendering combo boxes in a JTable 2 1 0.6 0.6 1 0.8 0.7 T_How to Use Tables; T_How to Write an Item Listener; T_How to Use Combo Boxes

19: java modifying a class directly, null reference 1 - 0 0 1 0.6 0.5 T_Anonymous Classes; S_Chapter 12.4. Initialization of Classes and Interfaces; A_java.lang.NullPointerException

20: windows azure date format to java date 1 - 0 0 1 0.8 0.7 A_java.text.SimpleDateFormat; A_java.time.format.DateTimeFormatter; A_java.text.DateFormat

21: reading arraylist from a .txt file 1 5 0 0.1 2 0.6 0.6 A_java.nio.file.Files.readAllLines(); A_java.io.FileInputStream; A_java.util.Scanner.nextLine();
22: close connection and statement finally 1 1 0.8 0.4 1 0.8 0.6 T_The try-with-resources Statement; A_java.sql.Statement; T_Using Transactions

23: when are java temporary files deleted 2 1 0.4 0.2 1 0.4 0.5 A_java.io.File.createTempFile(); A_java.io.File.deleteOnExit(); A_java.nio.file.Files.createTempDirectory()

24: shutdown application gracefully upon power loss 1 - 0 0 1 0.6 0.6 A_java.lang.Runtime.addShutdownHook(); A_java.util.concurrent.ExecutorService.shutdownNow() A_java.util.Timer

25: get single bytes from multi-byte variable 1 1 0.2 0.1 1 0.4 0.5 T_Primitive Data Types;A_java.nio.ByteBuffer ; T_Variables

average 1.4 > 1.94 0.32 0.284 1.32† 0.576† 0.568†

ware documentation returned by Google search in the query. The last row shows the500

average performance on the three metrics.

Compared with Google search, QDLinker achieves better performance on FR, P@5

and P@10. In most cases (20 out of the 25 queries), QDLinker is able to recommend

relevant software documentation at the first position in the result list. The differences

between these two approaches in terms of the three metrics are statistically significant505

at p < 0.05. That is, QDLinker provides more relevant software documentation in top

10 results than Google search in our user study.

The last column shows web page titles of the top 3 ranked relevant documents by

QDLinker, which consist of Java API documentation (marked by A_), Java language

specifications (marked by S_) and Java tutorials (marked by T_). For example, in510

Queries 1 and 2, “S_Chapter 16. Definite Assignment”⁶, “A_javax.xml.parsers. Docu-

⁶https://docs.oracle.com/javase/specs/jls/se8/html/jls-16.html

27

mentBuilder. parse()” ⁷, “T_Branching Statements”⁸ represent a document in language

specification, API documentation, and tutorial, respectively. Compared with Google

search, we make following observations:

• QDLinker can bridge the semantic gap between question and software documen-515

tation. For example, query 5 is “reinitialise transient variable”, and there is no

Java documentation which contains all the three keywords. Google search can-

not return relevant results in this query. Likewise, the state-of-the-art API usage

miner [13] cannot return any API sequences based on code corpus from Github.

We manually check our training dataset and find that some community users have520

implemented the task using the class “java.io.Serializable” and method

“readObject” on Stack Overflow. Thus, QDLinker can effectively answer this

question because it takes into account the content and context of software docu-

mentation simultaneously.

• QDLinker can effectively answer complex and bug-like queries. For instance,525

query 17 “raster format exception (Y+height)” and query 19 “java modifying a

class directly, null reference” are related to program exceptions. Poorer results

were obtained from Google for such kind of queries. On the contrary, QDLinker

provided high quality results for such kind of queries, and an example is the API

documentation java.awt.image.BufferedImage for query 17.530

• QDLinker can effectively answer programming questions which are in specific

usage scenarios. For instance, query 18 “rendering combo boxes in a JTable”

is about usage of combo boxes in the scenario of “JTable” and query 13 “java

executor with no ability to queue tasks” is about of Java executor in the sce-

nario of “queue tasks”. The official software documentation does not serve as535

good reference for these queries in specific usage scenarios, while QDLinker

can provide high quality software documentation for these queries. For example,

⁷https://docs.oracle.com/javase/8/docs/api/javax/xml/parsers/DocumentBuilder.html\

#parse-java.io.File-
⁸https://docs.oracle.com/javase/tutorial/java/nutsandbolts/branch.html

28

java.util.concurrent.ThreadPoolExecutor is a high-quality API docu-

ment for query 13.

6. Conclusion540

Developers often encounter questions in specific programming tasks. Although pro-

gramming languages and software packages are well supported by formal documenta-

tion, the documentation aims at comprehensive coverage and not on specific tasks. The

semantic gap between the developers’ questions and software documentation makes it

difficult for developers to search for the most relevant documentation. Utilizing the so-545

cial context available on Stack Overflow, we built QDLinker to bridge the gap between

the questions and documentation. Given a programming question, QDLinker returns

the links to the most relevant documentation. The semantic features between questions

and software documentation in QDLinker are learned through a four-layer deep neural

network. Together with content features, the learned features are fed to a learning-to-550

rank schema for ranking the most relevant software documentation at top position. Us-

ing real questions from Stack Overflow, we show that QDLinker effectively locates the

most relevant software documentation to questions, and its performance significantly

outperforms baseline methods.

The proposed QDLinker framework may benefit other software engineering prob-555

lems. First, considering the ability of bridging the semantic gap between programming

questions and software documentation, QDLinker could improve official software doc-

umentation with the information in questions and answers. Second, current code search

does not support natural language. QDLinker can be integrated in code search en-

gines to improve code search performance. Third, this work opens several interesting560

directions for future work with regard to automatic conversation between humans and

computers. In the future, we will explore the applications of QDLinker to these prob-

lems.

29

References

[1] Bagci, H., & Karagoz, P. (2016). Context-aware location recommendation by565

using a random walk-based approach. Knowledge and Information Systems, 47,

241–260.

[2] Berger, A., Caruana, R., Cohn, D., Freitag, D., & Mittal, V. (2000). Bridging the

lexical chasm: statistical approaches to answer-finding. In SIGIR (pp. 192–199).

[3] Burke, R. D., Hammond, K. J., Kulyukin, V., Lytinen, S. L., Tomuro, N., &570

Schoenberg, S. (1997). Question answering from frequently asked question files:

Experiences with the faq finder system. AI magazine, 18, 57.

[4] Cao, X., Cong, G., Cui, B., & Jensen, C. S. (2010). A generalized framework

of exploring category information for question retrieval in community question

answer archives. In WWW (pp. 201–210).575

[5] Cheng, Y., Yu, F. X., Feris, R. S., Kumar, S., Choudhary, A., & Chang, S.-F.

(2015). An exploration of parameter redundancy in deep networks with circulant

projections. In ICCV (pp. 2857–2865).

[6] Collobert, R., Weston, J., Bottou, L., Karlen, M., Kavukcuoglu, K., & Kuksa, P.

(2011). Natural language processing (almost) from scratch. Journal of Machine580

Learning Research, 12, 2493–2537.

[7] Deselaers, T., Hasan, S., Bender, O., & Ney, H. (2009). A deep learning approach

to machine transliteration. In Proceedings of the Fourth Workshop on Statistical

Machine Translation (pp. 233–241).

[8] Duan, H., Cao, Y., Lin, C.-Y., & Yu, Y. (2008). Searching questions by identifying585

question topic and question focus. In ACL (pp. 156–164).

[9] Er, M. J., Zhang, Y., Wang, N., & Pratama, M. (2016). Attention pooling-based

convolutional neural network for sentence modelling. Information Sciences, 373,

388–403.

30

[10] Figueroa, A., & Neumann, G. (2016). Context-aware semantic classification of590

search queries for browsing community question–answering archives. Knowledge-

Based Systems, 96, 1–13.

[11] Gani, A., Siddiqa, A., Shamshirband, S., & Hanum, F. (2016). A survey on in-

dexing techniques for big data: taxonomy and performance evaluation. Knowledge

and Information Systems, 46, 241–284.595

[12] Grbovic, M., Djuric, N., Radosavljevic, V., Silvestri, F., & Bhamidipati, N. (2015).

Context-and content-aware embeddings for query rewriting in sponsored search.

In SIGIR (pp. 383–392).

[13] Gu, X., Zhang, H., Zhang, D., & Kim, S. (2016). Deep api learning. In FSE (pp.

631–642). ACM.600

[14] He, K., & Sun, J. (2015). Convolutional neural networks at constrained time cost.

In CVPR (pp. 5353–5360).

[15] Hou, Y., Tan, C., Wang, X., Zhang, Y., Xu, J., & Chen, Q. (2015). Hitszicrc:

Exploiting classification approach for answer selection in community question an-

swering. In SemEval (pp. 196–202). volume 15.605

[16] Jeon, J., Croft, W. B., & Lee, J. H. (2005). Finding similar questions in large

question and answer archives. In CIKM (pp. 84–90).

[17] Ji, Z., Xu, F., Wang, B., & He, B. (2012). Question-answer topic model for ques-

tion retrieval in community question answering. In CIKM (pp. 2471–2474).

[18] Khan, J. A., Raja, M. A. Z., Rashidi, M. M., Syam, M. I., & Wazwaz, A. M.610

(2015). Nature-inspired computing approach for solving non-linear singular

emden–fowler problem arising in electromagnetic theory. Connection Science,

27, 377–396.

[19] Kim, Y. (2014). Convolutional neural networks for sentence classification. arXiv

preprint arXiv:1408.5882, .615

31

[20] Kingma, D., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv

preprint arXiv:1412.6980, .

[21] Ko, A. J., DeLine, R., & Venolia, G. (2007). Information needs in collocated

software development teams. In ICSE (pp. 344–353).

[22] Ko, A. J., Myers, B. A., Coblenz, M. J., & Aung, H. H. (2006). An exploratory620

study of how developers seek, relate, and collect relevant information during soft-

ware maintenance tasks. IEEE Transactions on software engineering, 32, 971–

987.

[23] Kokkinos, Y., & Margaritis, K. G. (2015). Topology and simulations of a hier-

archical markovian radial basis function neural network classifier. Information625

Sciences, 294, 612–627.

[24] LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521, 436–

444.

[25] Li, J., Bao, L., Xing, Z., Wang, X., & Zhou, B. (2016). Bpminer: mining develop-

ers’ behavior patterns from screen-captured task videos. In SAC (pp. 1371–1377).630

ACM.

[26] Li, J., Xing, Z., Ye, D., & Zhao, X. (2016). From discussion to wisdom: web

resource recommendation for hyperlinks in stack overflow. In SAC (pp. 1127–

1133).

[27] Mikolov, T., Chen, K., Corrado, G., & Dean, J. (2013). Efficient estimation of635

word representations in vector space. arXiv preprint arXiv:1301.3781, .

[28] Mikolov, T., Sutskever, I., Chen, K., Corrado, G. S., &Dean, J. (2013). Distributed

representations of words and phrases and their compositionality. In NIPS (pp.

3111–3119).

[29] Miller, G. A. (1995). Wordnet: a lexical database for english. Communications of640

the ACM, 38, 39–41.

32

[30] Munir, A., Manzar, M. A., Khan, N. A., & Raja, M. A. Z. (). Intelligent computing

approach to analyze the dynamics of wire coating with oldroyd 8-constant fluid.

Neural Computing and Applications, (pp. 1–25).

[31] Nadi, S., Krüger, S., Mezini, M., & Bodden, E. (2016). Jumping through hoops:645

why do java developers struggle with cryptography apis? In ICSE (pp. 935–946).

[32] Nair, V., & Hinton, G. E. (2010). Rectified linear units improve restricted boltz-

mann machines. In ICML (pp. 807–814).

[33] Nassif, H., Mohtarami, M., & Glass, J. (2016). Learning semantic relatedness in

community question answering using neural models. ACL, (p. 137).650

[34] Nicosia, M., Filice, S., Barrón-Cedeno, A., Saleh, I., Mubarak, H., Gao, W.,

Nakov, P., Da San Martino, G., Moschitti, A., Darwish, K. et al. (2015). Qcri:

Answer selection for community question answeringexperiments for arabic and

english. In SemEval (pp. 203–209). volume 15.

[35] Niu, H., Keivanloo, I., & Zou, Y. (2016). Learning to rank code examples for code655

search engines. Empirical Software Engineering, (pp. 1–33).

[36] Palomera, D., & Figueroa, A. (2017). Leveraging linguistic traits and semi-

supervised learning to single out informational content across how-to community

question-answering archives. Information Sciences, 381, 20–32.

[37] Petrosyan, G., Robillard, M. P., & De Mori, R. (2015). Discovering information660

explaining api types using text classification. In ICSE (pp. 869–879).

[38] Quoc, C., & Le, V. (2007). Learning to rank with nonsmooth cost functions. NIPS,

19, 193–200.

[39] Raghothaman, M., Wei, Y., & Hamadi, Y. (2016). Swim: Synthesizing what i

mean. In ICSE.665

[40] Raja, M. A. Z., Shah, F. H., Alaidarous, E. S., & Syam, M. I. (2017). Design of

bio-inspired heuristic technique integratedwith interior-point algorithm to analyze

the dynamics of heartbeat model. Applied Soft Computing, 52, 605–629.

33

[41] Robertson, S., Walker, S., Jones, S., Hancock-Beaulieu, M. M., & Gatford, M.

(1995). Okapi at trec–3. In Overview of the Third Text REtrieval Conference670

(TREC–3) (pp. 109–126). Gaithersburg, MD: NIST.

[42] Robillard, M. P., & Deline, R. (2011). A field study of api learning obstacles.

Empirical Software Engineering, 16, 703–732.

[43] Rohani, V. A., Kasirun, Z. M., Kumar, S., & Shamshirband, S. (2014). An effec-

tive recommender algorithm for cold-start problem in academic social networks.675

Mathematical Problems in Engineering, 2014.

[44] Sakai, T., Ishikawa, D., Kando, N., Seki, Y., Kuriyama, K., & Lin, C.-Y. (2011).

Using graded-relevance metrics for evaluating community qa answer selection. In

WSDM (pp. 187–196).

[45] Schmidhuber, J. (2015). Deep learning in neural networks: An overview. Neural680

Networks, 61, 85–117.

[46] Severyn, A., & Moschitti, A. (2015). Learning to rank short text pairs with con-

volutional deep neural networks. In SIGIR (pp. 373–382).

[47] Severyn, A., & Moschitti, A. (2016). Modeling relational information in

question-answer pairs with convolutional neural networks. arXiv preprint685

arXiv:1604.01178, .

[48] Singh, P., & Simperl, E. (2016). Using semantics to search answers for unanswered

questions in q&a forums. In WWW (pp. 699–706).

[49] Sun, R., Cui, H., Li, K., Kan, M.-Y., & Chua, T.-S. (2005). Dependency relation

matching for answer selection. In SIGIR (pp. 651–652).690

[50] Sun, Y., Chen, Y., Wang, X., & Tang, X. (2014). Deep learning face representation

by joint identification-verification. In Advances in neural information processing

systems (pp. 1988–1996).

[51] Surdeanu, M., Ciaramita, M., & Zaragoza, H. (2008). Learning to rank answers

on large online qa collections. In ACL (pp. 719–727). volume 8.695

34

[52] Tan, M., dos Santos, C., Xiang, B., & Zhou, B. (2016). Improved representation

learning for question answer matching. In ACL (pp. 464–473).

[53] Toba, H., Ming, Z.-Y., Adriani, M., & Chua, T.-S. (2014). Discovering high qual-

ity answers in community question answering archives using a hierarchy of clas-

sifiers. Information Sciences, 261, 101–115.700

[54] Turian, J., Ratinov, L., & Bengio, Y. (2010). Word representations: a simple and

general method for semi-supervised learning. In ACL (pp. 384–394).

[55] Van Nguyen, T., Nguyen, A. T., & Nguyen, T. N. (2016). Characterizing api

elements in software documentation with vector representation. In ICSE (pp. 749–

751).705

[56] Wu, Q., Burges, C. J., Svore, K. M., & Gao, J. (2010). Adapting boosting for

information retrieval measures. Information Retrieval, 13, 254–270.

[57] Xue, X., Jeon, J., & Croft, W. B. (2008). Retrieval models for question and answer

archives. In SIGIR (pp. 475–482).

[58] Yan, R., Song, Y., & Wu, H. (2016). Learning to respond with deep neural net-710

works for retrieval-based human-computer conversation system. In SIGIR (pp.

55–64).

[59] Yang, C., Bai, L., Zhang, C., Yuan, Q., & Han, J. (2017). Bridging collaborative

filtering and semi-supervised learning: A neural approach for poi recommenda-

tion. In SIGKDD (pp. 1245–1254).715

[60] Yao, Y., Tong, H., Xie, T., Akoglu, L., Xu, F., & Lu, J. (2015). Detecting high-

quality posts in community question answering sites. Information Sciences, 302,

70–82.

[61] Yen, S.-J., Wu, Y.-C., Yang, J.-C., Lee, Y.-S., Lee, C.-J., & Liu, J.-J. (2013).

A support vector machine-based context-ranking model for question answering.720

Information Sciences, 224, 77–87.

35

[62] Yu, L., Hermann, K. M., Blunsom, P., & Pulman, S. (2014). Deep learning for

answer sentence selection. arXiv preprint arXiv:1412.1632, .

[63] Zhou, G., Cai, L., Zhao, J., & Liu, K. (2011). Phrase-based translation model for

question retrieval in community question answer archives. In ACL (pp. 653–662).725

[64] Zhou, G., He, T., Zhao, J., & Hu, P. (2015). Learning continuous word embedding

withmetadata for question retrieval in community question answering. InACL (pp.

250–259).

[65] Zhou, G., Liu, Y., Liu, F., Zeng, D., & Zhao, J. (2013). Improving question re-

trieval in community question answering using world knowledge. In IJCAI (pp.730

2239–2245). volume 13.

[66] Zhou, G., Zhou, Y., He, T., & Wu, W. (2016). Learning semantic representation

with neural networks for community question answering retrieval. Knowledge-

Based Systems, 93, 75–83.

[67] Zou, Y., Ye, T., Lu, Y., Mylopoulos, J., & Zhang, L. (2015). Learning to rank for735

question-oriented software text retrieval (t). In ASE (pp. 1–11).

@article{L2ALiSX18,

author = {Jing Li and Aixin Sun and Zhenchang Xing},

title = {Learning to answer programming questions with software documentation

through social context embedding},740

journal = {Information Sciences},

volume = {448-449},

pages = {36--52},

year = {2018},

url = {https://doi.org/10.1016/j.ins.2018.03.014},745

doi = {10.1016/j.ins.2018.03.014},

}

36

