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Abstract—Software engineering social content, such as Q&A
discussions on Stack Overflow, has become a wealth of infor-
mation on software engineering. This textual content is centered
around software-specific entities, and their usage patterns, issues-
solutions, and alternatives. However, existing approaches to an-
alyzing software engineering texts treat software-specific entities
in the same way as other content, and thus cannot support
the recent advance of entity-centric applications, such as direct
answers and knowledge graph. The first step towards enabling
these entity-centric applications for software engineering is to
recognize and classify software-specific entities, which is referred
to as Named Entity Recognition (NER) in the literature. Existing
NER methods are designed for recognizing person, location and
organization in formal and social texts, which are not applicable
to NER in software engineering. Existing information extraction
methods for software engineering are limited to API identification
and linking of a particular programming language. In this
paper, we formulate the research problem of NER in software
engineering. We identify the challenges in designing a software-
specific NER system and propose a machine learning based
approach applied on software engineering social content. Our
NER system, called S-NER, is general for software engineering
in that it can recognize a broad category of software entities
for a wide range of popular programming languages, platform,
and library. We conduct systematic experiments to evaluate our
machine learning based S-NER against a well-designed rule-
based baseline system, and to study the effectiveness of widely-
adopted NER techniques and features in the face of the unique
characteristics of software engineering social content.

I. INTRODUCTION

Social online communities, such as Stack Overflow and

Quora, play a significant role in knowledge sharing and

acquisition for software developers [1]. The user-generated

content in these websites has grown into an important in-

formation resource on the Web that complements traditional

technical documentations [2]. A fundamental task for reusing

content in these websites is searching for discussions of a

specific software entity (e.g., a library, a tool, an API), to find

good usage patterns, bug solutions, or alternatives. Existing

approaches treat software engineering social content as textual

documents, and use vector space model (e.g., TF-IDF), topic

model (e.g., LDA [3]), or neural network language model (e.g.,

word embedding [4]) to index the content.
Existing approaches have an important limitation: uniform

importance assumption. That is, mentions of software-specific

entities in the content are treated in the same way as other

regular textual content. This assumption may result in less de-

sirable indexing of the content, because traditional information

retrieval concepts such as term frequency do not apply naively

to recognize essential domain-specific entities [5], [6], [4].
The social-technical nature of software engineering social

content available on social information sharing websites calls

for innovative forms of information extraction, organization,

and search. A very desirable goal would be to organize the

information in a knowledge base about different software-

specific entities and relationships between entities. Such

knowledge base can be represented as a graph, also known as

knowledge graph [7]. Search systems can exploit knowledge

graph not only for finding the content that actually discusses

a particular software-specific entity, but also to displaying

additional facts and direct information about the central entity

in a query [8]. As the first step towards knowledge graphs and

entity-centric search systems for software engineering domain,

we must be able to recognize mentions of software-specific

entities in software engineering social content and classify

them into pre-defined categories. This task is referred to as

named entity recognition or NER for short.
NER has been extensively studied on formal text (such as

news articles [9]), informal text (such as emails [10], [11]),

and social content (such as Tweets [12], [13]). The goal is to

recognize real-world objects in texts, such as person, location,

and organization. Some NER work from other domain exists

for recognizing domain-specific entities, such as Biomedical

NER [14], [15], NER in clinical notes [16]. In contrast, our

study focuses on designing domain-specific NER methods for

software engineering social content, a new genre of social-

technical texts. Proposed solutions to NER fall into three

categories: rule-based, machine learning based, and hybrid

methods. Existing studies show that machine learning based

methods usually outperform rule-based methods [9], [12], [16].

However, for software engineering texts, existing approaches

are limited to dictionary look-up and rule-based methods based

on code or text parsing techniques [17], [18], [19], [20].

Furthermore, the entity category is limited to only API.
In this work, we aim to design and evaluate a machine

learning based method for general NER in software engineer-

ing social content. By general NER for software engineering,

we mean that we would like to recognize not only APIs but

also other categories of software-specific entities (such as pro-

gramming languages, platforms, tools, libraries, frameworks,

software standards). We have the following research questions:

• What are the challenges in NER for software engineering
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social content, compared with formal text, other social

content like Tweets, or other domain-specific texts like

clinical notes?

• How can we adapt state-of-the-art machine learning based

NER pipeline for NER in software engineering social

content?

• How well will the machine learning based NER method

work in face of the unique challenges of software engi-

neering social content?

To answer these research questions, we make the following

contributions:

• We perform a formative study of a diverse set of Stack

Overflow posts covering major programming languages,

platforms, and libraries. Through this formative study, we

identify design challenges and key design decisions to be

made in NER for software engineering social content.

• We develop a software-specific, machine-learning based

NER method, called S-NER, including software-specific

entity categories, a software-specific tokenizer, Condi-

tional Random Fields (CRF) based learning, and a rich

and effective set of features for model training.

• We select and annotate a corpus of Stack Overflow posts,

and use this corpus to train and test our S-NER method.

We demonstrate the effectiveness of S-NER, and show

that the machine learning based method can significantly

outperform a well-designed rule-based baseline method.

We discuss some design lessons learned in our study

for researchers and designers of similar software-specific

NER systems.

• We provide our annotated corpus, collected gazetteers,

unsupervised word clusters, and trained CRF models to

the software engineering community for further research

and validation.

II. DESIGN CHALLENGES IN NER IN SOFTWARE

ENGINEERING SOCIAL CONTENT

Existing NER methods recognize real-world objects, such

as person, location, organization, time and date in formal

or informal texts. However, these entities are not what de-

velopers are concerned with in software engineering texts.

To recognize software-specific entities (such as programming

languages, platforms, frameworks, tools, libraries, APIs and

software standards) that developers care about, we must de-

velop software-specific NER methods. Little work has been

done along this line, except some API extraction and linking

work in software engineering texts [17], [18], [20].

In this section, we report our formative study of Stack

Overflow posts to understand the challenges in designing a

general NER method for software engineering social content.

Understanding these design challenges helps us choose and

customize state-of-the-art NER techniques for designing our

software-specific NER method.

We randomly sample a diverse set of 150 Stack Overflow

posts covering 6 popular programming languages (JavaScript,

Java, C#, Python, PHP, HTML), 1 popular platform (Android)

and 1 popular library (jQuery). We then manually identify

software-specific entities mentioned in these sampled posts.

Through this formative study, we summarize the following

challenges in NER in software engineering social content:

1) Stack Overflow discussions are characterized by not fol-
lowing strict linguistic rules and more spelling mistakes
compared to formal texts. For example, capitalizations

are used extensively in question titles and discussions

for emphasis. It happens that “JavaScript” is misspelled

as “javasript” (missing the character “c”).

2) Many software-specific entity names are common words.

For example, “String” is a class name, “Application” is

an Android class name, “config” can be a Python library

name. However, “String”, “Application” and “config”

are also very common words mentioned in the discus-

sions, for example, “this method returns string”, “I am

writing a Web Application”, “how to config it”.

3) Stack Overflow users often define code entities (e.g.,

classes, methods) for illustration purpose. These user-

defined code elements have the same lexical and syn-
tactic formats as library/framework APIs. However, they

are not code entities that developers are concerned with

in general.

4) Different software-specific entities often have the same

name. For example, the term “memcached” can be a

PHP class, and can also be a memory management

tool. “Mac” can be a platform names, or a class name

of Android, or an acronym of the software standard

“message authentication code“. This causes ambiguity
in determining appropriate entity category.

5) The informal nature of Stack Overflow posts introduces

many name variations for the same software-specific

entity. For example, in addition to the official program-

ming language name JavaScript, users also refer to the

language as Javascript, js, javascript, or JS.

6) Different programming languages usually have different

naming conventions for API entities. For example, the

naming of official Java methods follows lowerCamel-

Case, e.g., “getProperty”, PHP methods contain under-

score, while .NET APIs follow UpperCamelCase.

7) Stack Overflow posts contain a plethora of distinctive

named entities. Most of these entities (except for popular

programming languages and platforms) are relatively

infrequent.

Challenges 1-5 indicate that dictionary look-up or rule-

based methods would not produce reliable NER results on soft-

ware engineering social content. Furthermore, Challenges 5-7

indicate that it would be impractical or extremely expensive

to define a comprehensive set of NER rules. Thus, building a

machine learning based NER for software engineering social

content is necessary. To tackle the above challenges, the

machine learning based NER should not examine only local

features of individual words. Instead, it should take into ac-

count the surrounding context of the word to recognize entity

and determine entity category. Conditional Random Fields

(CRFs) [21], the state-of-the-art statistical modeling methods
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for solving such sequential data labeling problem, have been

widely used in NLP problems, such as POS tagging [22],

shallow parsing [13], and NER [23], [12], [16].

Building a machine learning based NER requires a lot of

annotated data or rules for model training. Manually creating

annotated data is tedious and prohibitively expensive. Further-

more, Challenges 5-6 indicate that Stack Overflow discussions

contain many more Out-of-Vocabulary (OOV) words (i.e,

entities that have not been seen in the training data) than

formal texts, due to name variations and naming-convention

differences. Challenge 7 indicates that even a large sample

of manually annotated posts will still contain few training

examples. Proposed solutions to alleviate this issue would

be semi-supervised learning, which aims to use unsupervised

word representations (e.g., Brown clusters [24]) learned from

the abundant unlabeled data as extra features to improve

accuracy of supervised NER model learned from small amount

of annotated data [25], [13].

Due to the OOV words, it is likely to encounter an entity

which is difficult to identify using local contextual cues alone

because the entity has not been seen before. In these cases,

a gazetteer or dictionary of known entity identifiers is often

useful [26], [9], [27], [12]. The gazetteer will not be used for

simple dictionary look-up. Instead, using gazetteers one may

define additional features in the CRF model that represent the

dependencies between a word’s NER label and its presence

in a particular gazetteer. Such gazetteer features are often

highly informative, and including them in the model should

in principle result in better model performance. Thus, we

should build software-specific gazetteers for NER in software

engineering social content.

III. PROBLEM DEFINITION

Based on our formative study, we define the problem of

NER in software engineering social content as follows. Let

T be a discussion thread, i.e., a question and its answers, in

Stack Overflow. A question or answer is referred to as a post

in Stack Overflow. Let S ∈ T be a sentence from a Stack

Overflow post. The NER task is to recognize from the sentence

S a span of words s = 〈w1 w2 ... wn〉 (n ≥ 1) that refers to

a software-specific named entity and classify s into the entity

category it belongs to.

For any NER task, an intuitive and informative inventory

of entity categories must be clearly defined. In traditional

NER task, entity categories usually include person, location,

organization, time and date. For NER in software engineering

texts, our first task is to develop a domain-specific inventory of

named entity categories which should achieve a good coverage

of different aspects of software engineering knowledge that

developers care about in Stack Overflow discussions.

To that end, the authors form a focus group and collabora-

tively review the software entities identified in our formative

study. After an iterative development process, we finalize an

inventory of software-specific entity categories in Table I.

We define 5 categories of software entities: Programming
Language (PL), Platform (Plat), API, Tool-library-framework

TABLE I: Software-specific Entity Categories

Entity Anno. ExamplesCategory Tag

Programming
PL

• Object-oriented, e.g., Java, C#

Language

• Procedural , e.g., C
• Scripting, e.g., Python
• Web development, e.g., JavaScript
• Other types, e.g., HTML, SQL

Platform Plat

• CPU instruction sets,
e.g., x86, AMD64, MIPS

• Hardware architectures,
e.g., CHRP, Mac Hardware, PReP

• Operating systems and system kernels,
e.g., Android, Ubuntu, NT

API API

• OOP: classes, packages, public methods,
interfaces, e.g., Java ArrayList, toString()

• Non-OOP: functions, routines,
e.g., C malloc, printf

• Others: events, built-in modules, etc.
e.g., JavaScript onclick event

Tool-library-
Fram

• Software tools,

framework

e.g., JProfiler, Firebug, Weka
• Software libraries,

e.g., jQuery, NumPy, OpenCV
• Frameworks,

e.g., Apache Maven, Spring 4.2
• Other types of software applications,

e.g., Sublime, Microsoft Word

Software
Stan

• Data formats, e.g., JSON, jar, .png, .xml

Standard

• Protocols, e.g., network protocols
TCP, HTTP, FTP

• Software design patterns,
e.g., Abstract factory, Builder

• Standard software technology acronyms,
e.g., AJAX, JDBC

(Fram), and Software Standard (Stan). In particular, the Pro-
gramming Language category covers different types of known

programming languages, such as Object-oriented, Procedural,

Scripting, Markup and Declarative. The Platform category

refers to hardware or software platforms, such as CPU in-

struction sets (e.g., x86, POWER, ARMv9, Sparc), hardware

architecture (e.g., CHRP, Mac), operating system and system

kernel (e.g., Android, iOS). The API category refers to API

elements of libraries and frameworks that developers can

program with, such as packages, classes, interfaces, methods,

functions, events and modules. The Tool-library-framework
category broadly refers to software tools, libraries and frame-

works that developers use. The Software Standard category

refers to data formats (e.g., pdf, JSON), design patterns (e.g.,

Abstract Factory, Observer), protocols (e.g., HTTP), technol-

ogy acronyms (e.g., Ajax), and so on.

In Table II, we illustrate our software-specific NER task

using some example Stack Overflow posts. Our task is to

recognize and classify those software entities highlighted in

boldface. Specifically, “Maven”, “Mac OS X”, “append”,

“extend”, “JSON” and “Java” should be recognized as frame-
work, platform, API, API, software standard and programming
language, respectively. Note that if an entity comprises more

than one word, e.g., “Mac OS X”, it is recognized correctly if

and only if all its words w1 w2 ... wn are recognized as part

of the entity. Furthermore, we do not consider code elements

that Stack Overflow users define to explain their questions

92



or answers as named entities, because these code elements are

not public APIs that a community of developers are concerned

with. Finally, in our NER system, we do not consider domain

terminologies and concepts as named entities. For example,

in the phrase “java plugin”, “java” will be recognized as a

programming language entity, while the domain term “plugin”

is considered as a common noun, not a named entity. Similarly,

we do not consider terms like “database”, “sorting”, “machine

learning” as named entities, as they refer to general concepts,

not specific entities.

TABLE II: Software-Entity Examples in Stack Overflow Posts

Post ID Extracted Texts
1 8826881 Maven Install on Mac OS X

2 252703
What’s the difference between the list
methods append and extend?

3 2591098 How to parse JSON in Java

IV. THE SOFTWARE-SPECIFIC NER SYSTEM

To address the design challenges in NER in software engi-

neering social content, we design a semi-supervised domain-

specific NER system (called S-NER) that integrates state-of-

the-art supervised sequence modeling and unsupervised NLP

techniques. Figure 1 shows an overview of our S-NER system.

S-NER is based on Conditional Random Fields (CRF) [21] for

supervised model training. S-NER utilizes a rich set of fea-

tures extracted from heterogeneous data resources, including

a small-sized human labeled dataset from Stack Overflow, a

large-sized unlabeled dataset from Stack Overflow, and various

external knowledge resources. In this section, we discuss

data preparation steps, customized tokenization, human entity

annotation, unsupervised word clustering, the CRF model, and

our feature design for training a CRF model.

A. Data Preparation

1) Labeled Data Preparation: Supervised learning requires

annotated (or labeled) data. Unlike previous studies [17], [18]

that are limited to one or two programming languages, we do

not restrict our NER data to be under the same programming

language or platform. From Stack Overflow’s official data

dump released on March 16th, 2015, we randomly select

posts under a diverse set of Stack Overflow tags, representing

popular object-oriented and procedural languages (java, c#),

Web and scripting languages (javascript, php, python), markup

language (html), platform (android), and library (jquery). In

fact, these 8 tags are the most frequently-used tags among

all the Stack Overflow tags. Specifically, we select 1,520

Stack Overflow posts from 300 Stack Overflow discussion

threads. The number of Stack Overflow posts we select for

a particular Stack Overflow tag is proportional to that tag’s

usage frequency on Stack Overflow. We refer to this dataset

as labeled data, as it will be labeled by human annotators and

used for supervised learning and model testing.

We pre-process the collected posts as follows. In the official

data dump of Stack Overflow, standalone code snippets are

surrounded with HTML tags 〈pre〉 and 〈/pre〉. We remove

these code snippets, because 1) the usage of the official APIs

in such code snippets usually follows programming syntax

and can be identified using rule and grammar-parser based

approaches as shown in previous work [17], [18]; 2) many

code elements in such code snippets are defined by question

askers or answerers for illustration purpose, and these code

elements do not refer to software-specific entities that other

developers are concerned with. However, we keep small code

elements embedded in the post texts that are surrounded with

〈code〉 and 〈/code〉 tags. These small code elements often

refer to APIs, programming operators and simple user-defined

code elements for explanation purpose. Removing them from

the texts will impair the sentence’s completeness and meaning.

Finally, we strip all other HTML tags from the post texts.

2) Unlabeled Data Preparation: As mentioned in Section

II, we use unlabeled Stack Overflow data to compensate for the

small-sized human-labeled data. In particular, we randomly se-

lect a huge-sized data consisting of more than 7 million Stack

Overflow posts from 1.8 million Stack Overflow discussion

threads tagged with the 8 most frequently used tags (java, c#,

javascript, php, python, html, android, and jquery). Again the

number of the posts selected for a particular Stack Overflow

tag is proportional to the tag’s usage frequency. We refer to this

dataset as unlabeled data, as it will be fed into unsupervised

word clustering [24] to learn word representations (i.e., word

bitstrings). The word representations will in turn be used as

features for training a CRF model. Data pre-processing steps

on this huge-sized unlabeled Stack Overflow texts are the same

as the above steps on the labeled data.

3) External Knowledge Resources: As mentioned in Sec-

tion II, gazetteers are collections of authentic named entities

for a particular domain. By authentic, it means that every

phrase in the gazetteer should be an entity. We can use

gazetteers as features for training a CRF model. While there

are many gazetteers publicly available for common person

names, locations, organizations, products, temporal expres-

sions [9], there are no gazetteers that can help to recognize

software-specific entities in software engineering texts.

We contribute a set of software-specific gazetteers, including

a comprehensive list of programming languages, a list of plat-

forms, a variety of API names covering popular programming

languages, a list of community-recognized software tools, li-

braries and frameworks, and software standards. For program-

ming languages, we derive notable languages in existence from

Wikipedia list 1. For platforms, we obtain the gazetteer from

several Wikipedia lists, including computing platform 2, list of
operating system 3, list of instruction sets 4, list of mobile plat-
form 5. We crawl the API names as defined in Table I from the

official websites of the studied programming languages (Java,

JavaScript, PHP, C#, Python, HTML), platform (Android), and

library (jQuery). In particular, we crawl the latest versions of

1https://en.wikipedia.org/wiki/List of programming languages
2https://en.wikipedia.org/wiki/Computing platform
3https://en.wikipedia.org/wiki/List of operating systems
4https://en.wikipedia.org/wiki/List of instruction sets
5https://en.wikipedia.org/wiki/List of mobile software distribution platforms
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the APIs for Java 8, PHP 5, Android API level 23. For C#,

we collect its API names for .NET 4.5 and 4.6. For Python,

we crawl its modules and methods for version 2.7 and 3.4.

For HTML, we collect both HTML tags and DOM methods.

For jQuery, we collect methods for the jQuery library and the

jQuery UI library. For software tools, libraries and frameworks

of different programming languages and platforms, we obtain

the list from GitHub Awesome Lists. GitHub Awesome Lists

is a popular software knowledge source on GitHub curated by

developers. For every main-stream programming language or

platform, there exists a curated list of well-known software

tools, libraries and frameworks, as well as other types of

information for that language or platform (See more at: https:

//github.com/sindresorhus/awesome). For software standards,

we obtain design pattern and protocol names from Wikipedia

lists. We cannot show all the data sources here due to space

limitation. We collect a list of data formats and technology

acronyms from Stack Overflow tags.

TABLE III: An Example of Our S-NER’s Tokenization

Input Sentence
What’s the equivalent of java’s
Thread.sleep() in js?

Stanford Tokenizer
What ’s the equivalent of java ’s
Thread . sleep ( ) in js ?

S-NER Tokenization
What ’ s the equivalent of java
’ s Thread.sleep() in js ?

B. Customized Tokenization

Tokenizers designed for general English texts cannot prop-

erly handle software engineering social content which is both

social and technical. We develop a domain-specific tokenizer

for handling texts with software-specific entities. The tokenizer

uses regular expressions to match valid URLs, at-mentions,

and emoticons (e.g., :), :))). The tokenizer does not split the

name of a software entity, e.g., the name of an API. It does not

split valid programming operators, such as “==” and “!=”. It

considers separate parentheses, i.e., ‘(’ and ‘)’, as punctuations.

However, parentheses, as well as dot, #, and $, that appear

in an API are considered as part of the API itself. In Table

III, we show an example of the S-NER’s tokenization results.

Line 1 is the input sentence. Line 2 is the tokenization done

by Stanford Tokenizer, which is designed for general English

texts. Line 3 is tokenized by S-NER. As we can see, S-NER

is able to tokenize the Java API Thread.sleep() as a whole,

while the tokenizer for general texts splits the API name into

5 tokens.

C. Human Entity Annotation

For annotation, we use Brat [28], a web-based annotation

tool. We adopt the widely used BIO representation of text

chunks. In our context, BIO means the Begin, Inside and

Outside of an entity. Take the 5-token sentence “Apache ant
is a tool” as an example. The correct annotation is “B-Fram
I-Fram O O O”, where “Fram” is the annotation tag as shown

in Table I, and B and I indicate the Begin and Inside of the

text chunk. This means that the phrase “apache ant” refers to

a framework, while the last three words are not entities.

The annotation process involves 3 stages and is performed

by 9 annotators who are all from computer science background

with 5+ years of programming experience. Before annotation,

we give all annotators an 1-hour tutorial regarding the tool

usage, annotation methods, and entity categories. We provide

some annotation examples for the annotators to practice. The

purpose is to let them reach a consensus on what kinds of

entities to annotate and how.

In Stage 1, each annotator is assigned with some Stack

Overflow posts. During this manual annotation process, we

ask them to report to us when there are tokenization errors or

deficiencies, and when certain tokens are hard to be labeled

using the software-specific entity categories we develop. After

this stage, we use the feedbacks from our annotators to

improve the tokenization, refine our software entity categories,

and clean up the annotated data. In Stage 2, we let annotators

cross validate the data, i.e., the same set of tokens from Stage

1 is examined by a different annotator in Stage 2. In Stage 3,

a final sweep to all the annotated data is made by the first,

third and forth author of this paper to improve the consistency

of our annotation.
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D. Unsupervised Word Clustering

To alleviate the problem of out-of-vocabulary (OOV) and

lexical word variations, we rely on unsupervised word clus-

tering to group together words that are distributionally similar.

Specifically, we apply Brown Clustering [24], [29] on the

unlabeled Stack Overflow posts (see Section IV-A2). Brown

Clustering assigns words that appear in similar contexts into

the same cluster. Words in the cluster are represented as a bit-

string. We use Liang’s implementation of Brown Clustering 6.

We configure the number of clusters to 1000 and we only

cluster words that appear no less than 10 times. It takes 15

hours to finish the word clustering of the unlabeled dataset on

a 4-core Intel i5-4570 processor. Table IV lists some resulting

word clusters and their corresponding bistrings. We can see

that word clusters can represent semantically similar words in

Stack Overflow posts.

TABLE IV: Example Word Clustering Results

Bitstring Top words (by frequency)

11111011110
.NET Spring ASP.NET Django HTML5 asp.net
bootstrap django Bootstrap Entity spring .Net
.net wordpress Wordpress Angular AngularJS JPA

11111111110
foreach setTimeout setInterval eval Files json encode
explode exec var dump print r await document.write

11111111111111
hover touch mouseover blur keyup keypress keydown
mouseout fadeIn mouseenter mouseleave mousedown
delegated show() fadeOut mouseup mousemove hide()

We also build an HTML viewer for interested readers to

browse and check our detailed word clustering results. We

host the HTML viewer at this web service: http://cyong.

oneinfinityloop.com/clusters/cluster viewer.html.

E. Supervised Learning based on CRF

S-NER is based on linear chain Conditional Random Fields

(CRF). We describe the CRF model here and the features we

use to train the CRF model.

1) Model: Given a sequence of observations (tokens in this

work) �x = x1, x2, ..., xn, we want to assign each observation

with a label (from our annotation tags shown in Table I and

BIO representation of text chunks), e.g., B-API, I-API, B-Plat,

I-Plat, O, and so on. This sequence of labeling is denoted as

�y = y1, y2, ..., yn. In linear chain CRF, the probability vector

of assigning �y based on �x is:

p�λ(�y|�x) ∝ exp(
n∑

j=1

m∑

i=1

λifi(yj−1, yj , �x, j)) (1)

where j specifies the position in the input sequence �x,
�f(yj−1, yj , �x, j) are the features to be designed for training

and testing, and λi represents the weight of feature fi.
2) Feature Design: We extract a rich set of features from

annotated corpus, unlabeled Stack Overflow texts, and external

knowledge resources.

Orthographic features: We design the following ortho-

graphic features based on our observations from Stack Over-

flow texts. We first use regular expressions to detect URLs,

at-mentions and emoticons. We consider as features whether

6https://github.com/percyliang/brown-cluster

a token is initial capitalized, whether all characters in a token

are capitalized, whether a token is alphanumeric, whether it

contains digits, underscores, or dots. We further examine if a

token has parentheses at the end, whether a token contains

both digits and dots, whether a token has capitalizations

in the middle. If a token has a dot, we also check if its

suffixes match a data format name in our collected “software

standard” gazetteer. We do so because many files names, e.g.,

“MyCode.java”, contain a dot but they are not named entities.

Note that many URLs have the above mentioned features,

therefore, we normalize a URL into “@u@” once it is detected

using regular expressions.

Lexical and contextual features: We consider every token

in our annotated corpus as a feature. We also consider the

uppercase form and the lowercase form of every token as

features. To utilize the context information, a window size

[-2, 2] is used to add the previous and the next two tokens as

features. We experiment other window size settings, but find

them not helpful for performance improvement.

Word bitstring features: As mentioned in Section IV-D, a

word is represented as a bitstring after word clustering. We use

prefixes of the bitstrings as features. Based on our word clus-

tering results, the prefix lengths we use are 5, 6, 7, 8, 9, ..., 15.

Take the bitstring at line 1 of Table IV as an example.

The length of this bitstring is 11. For prefixes lengths 5-

11, the prefixes used as features are “11111”, ”111110”, ...,

“11111011110”. For prefix lengths 12-15, the whole bitstring

is used as features.

Gazetteer features: We store the gazetteers for different

entity categories into different files. For each programming

language, we store the names of packages, classes, modules,

methods, events, etc., in separate files. We use string matching

results against gazetteer entries in different gazetteer files as

features. Specifically, we perform exact string matching for

class names and module names. We perform lowercase string

matching for entries that only have one word. We perform

fuzzy string matching using the fuzzywuzzy tool 7 for entries

that consist of a span of words. If the fuzzy ratio is above 0.8,

we consider it as a match.

V. EVALUATION

Our experiments are designed to demonstrate the need of a

machine learning based software-specific NER system, and to

test the efficacy of the software-specific feature set we develop,

given a small-sized annotated software engineering corpus.

A. Experimental Setup

The annotated corpus consists of 4,646 sentences derived

from 1,520 Stack Overflow posts. The total number of tokens

after tokenization is 70,570. The number of software-specific

named entities is 2,404. Stack Overflow discussions are entity-

rich, as evidenced by the fact that there are on average

1.58 (2404/1520) software entities per Stack Overflow post,

according to our annotation results.

7https://github.com/seatgeek/fuzzywuzzy
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Fig. 2: Proportion of Different Categories of Software-specific

Named Entities in Our Annotated Corpus

In Figure 2, we further show the proportions of different

categories of software-specific entities according to our pre-

defined entity categories in Table I. We can see that API is

the most discussed entity category among developers, which

accounts for 41% of all software-specific entities in our corpus.

For model training and testing, we use 10-fold cross valida-

tion. We randomly divide our annotated corpus into 10 equal-

sized subsets. Of the 10 subsets, one single subset is retained

as the testing data, and the remaining 9 subsets are used as

training data. We repeat this process 10 times and produce a

single estimation by averaging the 10 results obtained.

It is very likely that a question and its answers discuss the

same set of software entities. Therefore, to avoid model over-

fitting, we make sure that the answers to a particular question

will not be put in the testing data if the corresponding question

is in the training data.

For the implementation of linear chain CRF, we use

CRF++ 8, a popular CRF toolkit that has been widely used

for sequential tagging tasks like NER.

B. Evaluation Metrics

We use standard NER evaluation metrics, i.e., precision,

recall, and F1. For each category of named entity, precision

measures what percentage the output labels are correct. Recall

measures what percentage the named entities in the golden-

dataset are labeled correctly. F1-score is the harmonic mean

of precision and recall.

Using 10-fold cross validation produces 10 sets of testing

results. We calculate the average precision, recall and F1-score

as the overall performance of our S-NER system. We report

phrase-level precision, recall and F1. This means that if an

entity consists of a span of tokens, it is considered correctly

labeled if and only if all its tokens are labeled correctly (see

that example of “Mac OS X” in Table II in Section III).

C. Baseline System

Our baseline system is implemented using a mixture of

empirical lexical rules and dictionary look-ups. The dictionary

look-up is based on the gazetteers we collect from external

knowledge resources (see Section IV-A3). The testing data

used to evaluate the baseline system and the CRF model are

always the same.

Since our gazetteers cover a very broad range of software-

specific entities of different categories, we initially use these

8https://taku910.github.io/crfpp/

gazetteers directly for string matching. If a span of tokens

matches an entry in the gazetteer, we label it as an entity

of the corresponding category. However, this simple string-

matching approach performs poorly. For example, the F1 of

recognizing Programming Language entities and Tool-library-
framework entities are as low as 45% and 17%, respectively.

Our error analysis indicates that:

• Many entries in the gazetteers are common words, or have

only one single character. To name a few, “B”, “D”, “Go”,

“GOAL”, “Logo” are programming language names. “Ap-

plication” is an Android class. “Moment 9” is a JavaScript

date library, “click 10” is a Python library, “Task 11”

is a tool for running PHP tasks. Such common-words

or single-character entity names can impair the system

performance significantly when using string matching.

This is not a common phenomena for real-word objects,

such as person, location, and organization.

• Direct string matching is unable to handle name varia-

tions. For example, some users write the Android class

“ListView” as “List View”, “listview”, etc.

• For API names, users sometimes follow the standard

format package.class.method or class.method, but some-

times write the method names directly.

To improve the performance of the baseline system, we

further analyze the gazetteers of different entity categories and

design some lexical rules as follows.

• For the gazetteer of programming language entities, we

choose not to use the comprehensive list of programming

languages which consists of 419 programming languages.

Rather, we manually identify programming languages

from Stack Overflow tags with tag frequency greater than

10,000. We compile a short list of 30 popular languages,

and we add some of the commonly seen lexical variations,

e.g., “js” for “JavaScript”.

• We identify class and method names that are not com-

pound words and remove them from the gazetteer. Here

compound words refer to words like “ListView” which

is made of “List” and “View”. Some examples of the

removed APIs include: “Application” Class in Android,

“Array” Class in Java, etc. We store packages, classes,

methods for a certain language as separate entries in the

gazetteers, and use them separately or combine them as

necessary to match API mentions. Notice that formally

written APIs have distinguishable orthographic features,

e.g., formal PHP methods contain underscore in the

middle and parentheses at the end, some Python methods

follow the syntax of Module.Method(). Therefore, we add

regular expressions to detect those formal APIs.

• For the tool-library-framework gazetteers from GitHub

Awesome Lists, we manually identity those that can not

be differentiated from common words, such as the above

mentioned library and tool names “Moment”, “click”,

9http://momentjs.com/
10http://click.pocoo.org/5/
11http://taskphp.github.io/
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“Task”. We remove a list of such tool-library-frameworks

from the gazetteers (we do not list all of them here due

to space limitation).

• If a token begins with a dot followed by an entry in

the software standard gazetteer, we label it as a software

standard entity. For example, “.jar” and “.pdf” are labeled

as software entities.

• The string matching methods against gazetteer entities are

similar to what we do to the gazetteer feature design (see

Section IV-E2).

• We further add some empirical rules. If the current word

matches a one-word entry in the programming language,

or the platform, or the tool-library-framework gazetteer,

we check if its next word is made of digits and dots, we

also check if its previous word is a software company

or organization name (we manually identity a list of

software organization names, such as microsoft, apache,

etc.). We do so to enhance the detection of software

entities that consist of span of words, such as “python

2.7”, “apache ant”, “microsoft excel”, etc.

Our experience with the baseline system suggests that it is

not an easy task to design a robust dictionary and rule based

NER system for software engineering social content. We invest

a significant effort to improve the baseline so as to make a fair

comparison with the machine learning based NER system.

D. Overall Comparison Results of All Entity Categories
In Table V, we show the overall results when using S-

NER and the baseline system to recognize all 5 categories of

software-specific entities defined in Table I. We see that the

overall F1-score of S-NER is 78.176%, which outperforms

that of the baseline system by 30.3%. The improvements

of precision and recall when comparing S-NER against the

baseline system are 47% and 14.4%, respectively.

TABLE V: Overall Experimental Results

System Precision(%) Recall(%) F1(%)

Baseline 55.849 65.293 60.018
S-NER 82.093 74.706 78.176

47.0% ↑ 14.4% ↑ 30.3% ↑
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Fig. 3: Comparison of S-NER and the Baseline System for the

10 Testing Sets

Recall that we use 10-fold cross validation. In Figure 3, we

show the detailed comparisons between S-NER and the base-

line on the 10 testing data. We observe that the performance

of S-NER exceeds its baseline system consistently on all the

testing data. The largest improvement among all the test data

occurs in test3, the F1-score of S-NER is slightly more than

81%, while the F1 of the baseline system is around 55%. 81%

is the highest F1 obtained for S-NER (test3), while the lowest

F1 of S-NER is about 73% (test8). The highest and lowest F1

of the baseline system are 68% (test1) and 55% (test3).

E. Comparison Results of Individual Entity Category

We report the experimental results of each individual entity

category in Table VI. As we can see, the NER performances

of both S-NER and the baseline system on different categories

of entities are quite different.

TABLE VI: NER Results of Individual Entity Category

(a) Programming Language Category

System Precision(%) Recall(%) F1(%)

Baseline 87.918 87.548 87.457
S-NER 92.146 94.674 93.358

4.8% ↑ 8.1% ↑ 6.7% ↑
(b) Platform Category

System Precision(%) Recall(%) F1(%)

Baseline 75.447 80.506 76.423
S-NER 79.979 76.938 77.204

6.0% ↑ 4.4% ↓ 1.0% ↑
(c) API Category

System Precision(%) Recall(%) F1(%)

Baseline 45.336 66.343 53.105
S-NER 77.515 66.521 71.018

71.1% ↑ 0.3% ↑ 33.7% ↑
(d) Tool-library-framework Category

System Precision(%) Recall(%) F1(%)

Baseline 47.565 42.967 44.47
S-NER 74.805 69.019 71.702

57.1% ↑ 60.5% ↑ 61.1% ↑
(e) Software Standard Category

System Precision(%) Recall(%) F1(%)

Baseline 54.341 62.121 55.891
S-NER 88.117 74.686 79.995

62.2% ↑ 20.1% ↑ 43.1% ↑

It follows our expectation that the NER of programming

languages achieves very high precision, recall and F1 for

both S-NER and the baseline, as shown in Table VIa. The

rule and dictionary look-up based baseline is able to perform

well with F1 at 87.457%. One example error made by the

baseline system is that it excessively labels the word “C” as

programming language, even though many times “C” is just a

common char. By comparison, the machine learning based S-

NER considers the contextual environment of the current word,

as covered in Section IV-E2, and is more robust (93.358% F1).

In Table VIb, we show the results for the NER of platforms.

We can see that the F1 of the baseline system is very close to

that of S-NER. S-NER has the better precision, but the baseline
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system has the better recall. We can understand this result from

two aspects. First, the naming of platforms is not as ambiguous

as the naming of other categories of entities. Common words

are not frequently used as platform names. Second, the number

of known platforms is much less compared to the number

of APIs, tools, frameworks, etc. These factors reduce the

difficulty of platform NER.

From Table VIc, VId, VIe, we see that the machine learning

based S-NER can outperform the baseline significantly when

recognizing APIs, tool-library-frameworks, and software stan-

dards. The F1 improvements observed for these three entity

categories are all higher than the overall improvement shown

in Table V. These results suggest that it can be very difficult

to develop a robust rule based approach to recognize the

informally written API names, tool-library-frameworks, and

software standards in software engineering social content like

Stack Overflow, because it is impossible to know in advance

what word variations and ambiguities there would be.

F. Feature Ablation

We also perform independent feature ablation experiments

to study the effect of individual feature(s) on the NER per-

formance. In Table VII, we ablate one kind of feature(s) at a

time from our full feature set and test the resulting F1-score.

We find that using unsupervised word bitstrings as features

is very helpful, without which the overall F1 drops sharply

from 78.176% to 72.642%. The dropping of F1 without word

clustering features is the most significant for the API category

and the tool-library-framework category.

The use of gazetteers as features has small impact on the

final system performance. Removing gazetteer features only

leads to the decrease of F1 score for about 0.5%. This is

noteworthy: gazetteer features are considered critical in other

NER work [9], [12], especially for NER in social texts such

as Tweets [12]. In these studies, gazetteers can boost the

NER performance tremendously by an F1 increase of 19%

as reported in [12]. We will discuss more about the design of

software-specific gazetteers in Section VI.

Our results show that initial capitalization feature is not

particularly useful for software-specific NER, as we raised

in Section II. The F1 without initial capitalization is slightly

lower at 77.577%. Without prefixes and suffixes features, F1

decreases slightly to 76.719%. We also ablate other ortho-

graphic features one by one, and we find that the absence

of one particular orthographic feature does not significantly

impair S-NER’s F1 score. Overall, S-NER’s performance is

contributed by the combined action of all its features.

G. Varying Labeled Data Size

We want to further understand how S-NER’s performance

changes with the size of the labeled data, so as to know how

much data we should label to reach a reasonable F1-score.

In this set of experiments, we turn on our full-feature set

during training and testing. We randomly select one-tenth,

two-tenth, three-tenth, ..., nine-tenth and all of the original

labeled dataset, and use these datasets for model training and

TABLE VII: The Effects of Individual Feature(s)

F1-score for each entity category (%) Overall
PL Plat API Fram Stan F1(%)

Full-feature 93.358 77.204 71.018 71.702 79.995 78.176

w/o word clustering 91.327 77.492 66.507 57.581 75.823 72.642

w/o gazetteer 92.395 75.092 70.372 72.197 78.476 77.691

w/o affixes features 92.268 76.642 69.282 71.34 76.901 76.719

w/o init. Capital. 91.862 79.982 69.779 72.801 79.417 77.577

testing. For each dataset, we use 10-fold cross validation. We

report the corresponding averaged F1 of S-NER in Figure 4.

As we increase the size of labeled data, we see F1 increases

monotonically. The smaller the size of the labeled data, the

larger the increase rate. The F1-score becomes relatively stable

after we use about 80% of all the labeled data.
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Fig. 4: Effects of Labeled Data Size on S-NER’s Performance

VI. WHY DOES GAZETTEER NOT WORK?

Two important decisions in the design of our S-NER

system are to include unsupervised word representations and

gazetteers as features for training the CRF model. As reported

in Table VII, unsupervised word clustering boosts the NER

performance as expected. However, gazetteers have marginal

effect on the performance of S-NER. This contradicts the re-

sults of many NER studies showing that insertion of gazetteers

as features in machine learning based NER can significantly

boost NER performance [26], [9], [27], [12].

The principle of how gazetteer features work is that: if

a span of tokens (n≥1) in the training dataset matches a

gazetteer entry and is labeled as an entity, the CRF model

will know that a string matching in that gazetteer is an

indicator of entity appearance. Accordingly, the weight λ (see

Eq.1) to that specific gazetteer feature will increase. However,

software-specific gazetteers contain highly common words.

Take the Android class-name gazetteer as an example. Words

like “Application”, “Path”, “Array” are Android classes. In

most of the situations, these words are labeled as “O”, i.e.,

they are not entities in Stack Overflow texts. Therefore, the

weight λ of such gazetteer features will decrease during CRF

model training. As a result, even if in some cases that these

common words indeed refer to software entities, it could be

difficult for S-NER to recognize them.

A common practice to alleviate the issue of common words

in NER tasks is to remove these common words from the

gazetteer [26], [27], similar to what we do for the baseline sys-

tem, as covered in Section V-C. However, this practice proves

to be not very helpful for software-specific NER. We only

observe a small performance improvement for the recognition

of tool-library-frameworks after we remove common words

from gazetteers. The recognition of APIs, which occupy the
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largest proportion of all entities, has almost no improvements.

Again, we use the example of Android class-name gazetteer to

understand this observation. After removing common words,

the entries left in the Android class gazetteer are mostly

compound words, such as ”AbsListView”, “AbstractList” and

“AbsListView.LayoutParams”. These words have distinct or-

thographic features, e.g., their suffixes, prefixes and capitaliza-

tion patterns. Words with similar orthographic features appear

frequently in the training dataset. Consequently, even without

the insertion of gazetteers, the CRF model can recognize these

words accurately. As such, gazetteers have little impact on the

NER performance.

Our analysis indicates that: how to design a high-quality

gazetteer for software-specific NER remains to be an open

question for the software engineering research community.

VII. RELATED WORK

A. Software Engineering Information Extraction and Linking

In software engineering community, software information

extraction and linking have been extensively studied.

A large body of the work focus on code element ex-

traction and linking [17], [18], [11], [30], [31], [32], [33],

[34], [35], [19]. In this line of research, the named entities

being recognized involve and only involve APIs of certain

programming languages, usually formulated as a traceability

recovery problem. For example, Rigby and Robillard [17]

develop a code element extraction and linking tool and propose

the notion of code salience as an indicator of the importance

of a particular code element. Subramanian et al. [18] build a

browser extension that links an API in code snippets of Stack

Overflow to its corresponding API reference documentation.

Some work recognizes important words or concepts in

software artifacts to facilitate content comprehension [20],

[36], [37]. For example, Shokripour et al. [36] use part-of-

speech information to find software noun terms in bug reports.

Hauff et al. [37] utilize the DBPedia Ontology to extract

software concepts from GitHub developer profiles.

Other related work includes: Witte et al. [38] build ontology

representations for software artifacts. In [39], natural language

parsing is used to classify the content of development emails.

Bagheri and Ensan [40] mine Wikipedia contents and recom-

mend Wikipedia entries as potential tags for tagging Stack

Overflow posts. Sharma et al. [41] identify Tweets that contain

software engineering knowledge using language model. Tian

et al. [42], Yang and Tan [43], [44] and Howard et al. [45]

study software-specific word similarity in software texts.

Comparing with these studies, our work aims to recognize

a wide range of software-specific entities (not limited to code

elements of a particular programming language), and classify

each recognized entity into the entity category it belongs to.

In particular, we formulate the research problem of NER in

software engineering and present a working solution.

B. Named Entity Recognition in Other Domains

One representative work of Traditional NER is done by

Ratinov and Roth [9]. They systematically study the design

challenges of NER in formal English texts, and point out

design decisions should be made in traditional NER.
Apart from formal English texts, NER has also been widely

studied in other genres of texts.
NER in social media. The informal nature of social texts

introduces new challenges to NER. Liu et al. [12] recognize

entities from Tweets, and report an average F1 of 80% when

recognizing persons, locations and organizations. Ritter et al.

[13] also investigate NER in Tweets. They recognize a wider

range of named entities and achieve an overall F1 of 66%.
NER in bioinformatics. Biomedical-specific named entity

recognition (Bio-NER) is an another active research field. Bio-

NER recognizes bio-specific entities such as protein, DNA,

RNA and cell. Bio-NER has been raised as a community task

[14]. Machine learning based systems are commonly used and

are found to outperform rule based systems [15], [16].
Commercial products NER. Yao and Sun [23] perform

mobile phone names recognition and normalization in Internet

forums. Wu et al. [46] recognize mentions of consumer

products from user-generated comments on the Web.
NER in non-English natural language. Wu et al. [47]

propose a customized statistical model for NER in Chinese.

Shaalan and Raza [48] develop a NER system for Arabic.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we formulate the research problem of NER

in software engineering. To design a software-specific NER

system, we show that one must first understand the unique

characteristics of domain-specific texts that bring unique de-

sign challenges. Then, based on the understandings of these

design challenges, we show how we combine state-of-the-art

supervised and unsupervised machine learning and NLP tech-

niques to design an effective software-specific NER solution,

which can reduce the demand for labeled data, meanwhile

maintain the generality and robustness of the NER system.
We build S-NER, a semi-supervised machine learning

method for NER in software engineering social content, and

demonstrate that S-NER significantly outperforms a well-

designed rule-based NER system when applied on Stack

Overflow posts. In the process of building this NER system, we

contribute an inventory of software-specific entity categories,

a corpus of labeled Stack Overflow posts, a software-specific

tokenizer, a collection of software-specific gazetteers, unsuper-

vised word clusters, and a rich and effective set of features for

NER in software engineering texts. We release our annotated

dataset and trained CRF models 12 for community validation

and further research.
The method presented in this paper can be extended to

more software engineering texts. We are on a continuous

effort to extract software-specific entities from different types

of software engineering texts (e.g., API documentations, bug

reports, Tweets), and to develop entity-centric search systems

for the software engineering domain.
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