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Abstract—In recent years the amount of research on human
aspects of software engineering has increased. Many studies use
screen-capture software (e.g., Snagit) to record developers’ be-
havior as they work on software development tasks. The recorded
task videos capture direct information about which activities the
developers carry out with which content and in which applica-
tions during the task. Such behavioral data can help researchers
and practitioners understand and improve software engineering
practices from human perspective. However, extracting time-
series interaction data (software usage and application content)
from screen-captured videos requires manual transcribing and
coding of videos, which is tedious and error-prone. In this paper
we present a computer-vision based video scraping technique to
automatically reverse-engineer time-series interaction data from
screen-captured videos. We report the usefulness, effectiveness
and runtime performance of our video scraping technique using
a case study of the 29 hours task videos of 20 developers in the
two development tasks.

I. INTRODUCTION

It has long been recognized that the humans involved in

software engineering, including the developers as well as other

stakeholders, are a key factor in determining project outcomes

and success. A number of workshops and conferences (e.g.

CHASE, VL/HCC) have focused on human and social aspects

in software engineering. An important area of these studies

is to investigate the capabilities of the developers [1–3], their

information needs in developing and maintaining software [4–

6], how developers collaborate [7, 8], and what we can do to

improve their performance [9–12].

Different from software engineering research with technol-

ogy focus, research that focuses on human aspects in soft-

ware engineering adopts behavioral research methods widely

used in humanities and social sciences [13]. The commonly

used data collection methods in such human studies include

questionnaire, interview, and observation. Among these data

collection methods, observation can provide direct information

about behavior of individuals and groups in a natural working

context. It also provides opportunities for identifying unantic-

ipated outcomes.

Two kinds of techniques have been commonly used to

automatically record observational data in the studies of de-

veloper behavior: software instrumentation and screen capture.

We can instrument software tools that the developers use
§Xinyu Wang is the corresponding author

to log the developers’ interaction with the tools and the

application content. For example, Eclipse IDE can record

which refactorings the developers apply to which part of the

code[14]. Instrumenting many of today’s software systems is

considerably complex. It often requires sophisticated reflection

APIs (e.g., Accessability API or UI Automation API) provided

by applications, operating systems and GUI toolkits [15, 16].

Furthermore, developers use various tools (e.g., IDE, web

browsers) in software development tasks. Instrumenting all of

these tools requires significant efforts.

Screen-capture techniques offer a generic and easy-to-

deploy alternative to instrumentation. Screen-capture software

can easily capture the developers’ interaction with several

software tools. We surveyed 25 papers that were published in

top-tier software engineering conferences from 1992 to 2014.

These papers have studied various human aspects in software

engineering. Screen-capture techniques were commonly used

to record the developers’ behavior in these studies. However,

many studies used video data mainly as qualitative evidence of

study findings. Some studies [3, 4, 9] performed quantitative

analysis of developers’ behavior by manually transcribing and

coding screen-captured videos. These studies provided deeper

insight into the developers’ behavior in various software

development tasks. Such quantitative analysis was expensive

and time consuming. It was reported that the ratio of video

recording time and video analysis time was about 1:4-7.

As the amount of research on human aspects of software en-

gineering has increased, there has been a greater need to come

up with a solution to automatically extract software usage and

application content data from screen-captured videos, in order

to facilitate quantitative analysis of the developers’ behavior

in software development tasks. In this paper, we present a

computer-vision-based video scraping technique to recognize

window-based applications in screen-captured videos, and

to extract application-specific content from the recognized

application windows (e.g., code fragments in code editor, error

messages in console output, URLs in address bar of web

browser, and keywords in search box of search results page).

We conducted a case study to evaluate the usefulness, effec-

tiveness, and runtime performance of our video scraping tool.

Our study demonstrated the effectiveness of video scraping

technique in reverse-engineering time-series interaction data

(software usage and application content) from screen-captured
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videos. Based on the extracted time-series interaction data,

we conducted a quantitative analysis of the 20 developers’

online search behavior in the two development tasks. Our study

also identified the improvement space of the tool’s runtime

performance.

The remainder of the paper is structured as follows. Sec-

tion II summarizes our survey of the use of scree-captured

videos in the 25 studies on human aspects of software engi-

neering. Section III describes the metamodel of application

windows that our technique assumes. Section IV discusses

technical details of our video scrapping technique. Section V

reports our evaluation of the tool. Section VI reviews related

work. Section VII concludes the paper and discusses the future

work.

II. USE OF SCREEN-CAPTURE VIDEOS IN SE STUDIES

We performed a literature review using keywords such as

“software engineering”, “exploratory study”, “empirical study”

and/or “screen capture”. From the search results, we surveyed

25 papers that studied human aspects of software engineering.

Among these 25 papers, 13 papers studied and modeled the

developers’ behavior in various software development tasks,

such as debugging [1, 3, 17], feature location [5], program

comprehension [2, 4, 6, 11, 18–20], feature enhancemen-

t [17], and using unfamiliar APIs [12, 21]; 3 papers elicited

information needs and requirements for improving software

development tools [9, 22, 23]; 5 papers studied software

engineering practices such as novice programming [10], pair

programming [7], distributed programming [8], testing of

plugin systems [24], and game development [25]; and 4 papers

investigated visualization techniques of software data such as

code structure [26, 27], program execution [28], and social

relationship in software development [29].

Our survey showed that screen-capture techniques have

been widely used to collect observational data in study-

ing human aspects of software engineering, especially for

modeling the developers’ behavior in software development

tasks and eliciting design requirements for innovative software

development tools. Some studies [1, 3, 7, 20, 26, 27, 29]

used think-aloud technique [30] to collect the data about the

developers’ behavior in the tasks. Think-aloud technique is

obtrusive. It may affect the developers’ normal behavior. A

few studies [1, 7, 28] used human observers to observe and

take notes of the developers’ behavior. This human-observer

approach does not scale well and may suffer from experi-

menter expectancy effect [13]. Studying software engineering

practices (e.g., peer programming [7], game development [25],

and plugin testing [24]) usually used survey and interview

methods that can collect only self-reported qualitative data.

Although screen-capture techniques provide scalable and

unobtrusive techniques to collect the developers’ behavior

data, the collected video data have been underused in many

studies. A key reason for this underuse is the significant

time and efforts required for manually transcribing or coding

unstructured video data into software usage and application

content data for the study purpose. 15 studies reported manual
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Fig. 1. The Metamodel of Application Windows

analysis of screen-captured videos in order to identify types

of information the developers explored [3, 18, 19], infor-

mation foraging actions [5, 9, 10, 17, 21–23], and patterns

of developers’ information behavior [4, 6, 11, 12, 20]. 4

papers [6, 9, 10, 23] of these studies reported the efforts

required for manual coding of the collected screen-captured

video data. The reported ratio of video recording time and

analysis time was between 1:4-7, depending on the details

and granularity of the information to be collected.

The most costly studies were to study fine-grained be-

havioral patterns in software development tasks (e.g., [5, 9])

because they required iterative open coding of screen-captured

videos. For example, Ko and Myers [9] reported “analysis of

video data by repeated rewinding and fast-forwarding”. How-

ever, compared with qualitative data collection and analysis

methods, such fine-grained studies of the developers’ behavior

can provide deeper insights into the outstanding difficulties in

software development, and thus inspire innovative tool support

to address these difficulties [31, 32].

Summary: Previous studies demonstrated the usefulness of

screen-capture videos in studying human aspects of software

engineering. However, to fully exploit the potentials of screen-

captured video data in software engineering studies, there is a

great need for automatic tool support that can reverse-engineer

time-series interaction data (software usage and application

content) from screen-captured videos.

III. DEFINITION OF APPLICATION WINDOW

A person recognizes an application window based on his

knowledge of the window layout and the distinct visual cues

(e.g., icons) that appear in the window. Our video scrap-

ing technique (scvRipper) requires as input the definition of

application windows to be recognized in a screen-captured

video. The definition of an application window “informs” the

scvRipper tool with the window layout, the sample images of

distinct visual cues of the window’s GUI components, and the

GUI components to be scraped once they are recognized.

Fig. 1 shows the metamodel of application windows. scvRip-
per assumes that an application window is composed of a

hierarchy of GUIComponents. Rows and windows define the

layout of the application window. A row or window can

contain nested rows, nested windows, and/or leaf GUIItems.

Rows and GUIItems have relative positions in the application

window (denoted as index), while windows do not have. A

GUIItem contains an order set of VisualCues. A VisualCue

contains a set of sample images of the visual cue. If the

application window can have only one instance of a VisualCue,
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(b) Definition of Eclipse IDE Window

Fig. 2. Two Instances of Application-Window Metamodel

the isunique of the VisualCue is true. The GUIComponents

whose tobescraped = true will be scraped from the applica-

tion window in the screen-captured video.

Fig. 2 shows the definition of the Eclipse IDE and the

Google Chrome window. The definition of the Eclipse window

assumes that the Eclipse window consists of a GUIItem

(TitleBar) and four rows (Menu, ToolBar, MainContent, and

StatusBar) from top down. We omit the definition details of

Menu, ToolBar and StatusBar due to space limitation. The

TitleBar contains a unique VisualCue (Eclipse application

icon). MainContent row may contain CodeEditor windows and

ConsoleView windows. CodeEditor window contains FileTab

and EditArea GUIItems. These two GUIItems contain non-

unique visual cues (such as Java file icons, compile error i-

cons). This definition instructs scvRipper to scrape CodeEditor

and ConsoleView windows from the Eclipse window.

The definition of the Chrome window assumes that the

Chrome window consists of two rows from top down: Header

and WebPage. The Header contains three GUIItems from left

to right: NavigationPart, AddressBar, and Tool. Navigation-

Part contains three VisualCues from left to right: GoBack,

GoForward, and Refresh buttons. These buttons are unique in

the Chrome window. The WegPage may contain a SearchBox

GUIItem as commonly seen in search engine wegpages. A

SearchBox has a unique Search button VisualCue. This def-

inition instructs scvRipper to scrape AddressBar, SearchBox

and WebPage from the Chrome window.

We have developed a configuration tool to aid the definition

of application windows. The tool can define the hierarchy of

GUIComponents, configure the attributes of GUIComponents,

and attach sample images of visual cues to GUIComponents.

Collecting sample images of visual cues may require certain

efforts. However, this task usually needs to be done only once.

The definition of an application window can be applied to

screen-captured videos taken in different screen resolutions

and window color schema, as neither window definition nor

computer-vision techniques that scvRipper uses are sensitive

to screen resolutions and window color schema.

IV. VIDEO SCRAPING TECHNIQUE

In this section, we first give an overview of our video

scraping technique. We then detail the key steps.

A. Technique Overview

Fig. 3 presents the process of our video scraping tech-

nique. We have implemented our technique in a tool (called

scvRipper) using OpenCV (an open-source computer vision

library). Our scvRipper tool takes as input a screen-captured

video, i.e., a time-series stream of screenshots taken by screen-

capture tools such as Snagit 1. It produces as output a time-

series interaction data (i.e., software usage and application

content) reverse-engineered from the video. Our scvRipper
tool essentially uses computer-vision techniques to transcribe

a stream of screenshots that only human can interpret into a

stream of interaction data that a computer can automatically

analyze or mine for behavioral patterns.

First, scvRipper uses an image differencing technique [33]

to detect screenshots with distinct content in the screen-

captured video. This step reduces the number of screen-

shots to be further analyzed using computationally expen-

sive computer-vision techniques. Next, the core algorithm of

scvRipper processes one distinct-content screenshots at a time

to recognize application windows in the screenshot based

on the definition of application windows provided by the

user. The recognized application windows identify software

used at a specific time in the video. Then, scvRipper scrapes

the GUIComponent images from the recognized application

windows in the screenshot as specified in the definition of

application windows. It uses Optical-Char-Recognition (OCR)

technique to convert the scraped GUIComponent images into

textual application content processed at a specific time in the

video.
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Fig. 3. The Process of Our Video Scraping Technique

The upper part of Fig. 4 shows an illustrative example

of a screen-captured video. In this example, four distinct-

content screenshots are identified at five time periods. The

lower part of Fig. 4 shows the time-series interaction data

1http://www.techsmith.com/snagit.html
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Fig. 4. An Illustrative Example Of a Screen-Captured Video and Video Scraping Results

reverse-engineered from these four distinct-content screen-

shots according to the definition of Eclipse IDE and Google

Chrome window in Fig. 2. Bulky contents (e.g., web page,

code fragment) are omitted due to space limitation. This time-

series interaction data identifies the software tools that the

developer used at different time periods. It also identifies

the application content that the developer processed (such as

search queries, visited websites, code fragments, and runtime

exceptions) at different time periods.

B. Detecting Distinct-Content Screenshots

The screen capture tools can record a large number of

screenshots (e.g., 30 screenshots per second). A sequence

of consecutive screenshots may be the same, for example a

person does not interact with the computer for a while. Or they

may differ little, for example due to mouse movement, button

click, or small scrolling. Thus, there is no need to analyze

each screenshot in the screen-captured video.

To that end, scvRipper uses an image differencing algo-

rithm [33] to filter out subsequent screenshots with no or

minor differences in the screen-captured video. This produces

a sequence of distinct consecutive screenshots, s1, s2, ..., sn
where any two consecutive screenshots si and si+1 are

different, i.e., over a user-specified threshold (tdiff ). The

two non-consecutive screenshots can still be the same in

this sequence of distinct consecutive screenshots. scvRipper
uses image differencing technique again to identify distinct-

content screenshots. scvRipper stores the traceability between

a distinct-content screenshot and all the screenshots it repre-

sents during this image differencing process.

Take the screen-captured video in Fig. 4 as an example.

The developer views two web pages side-by-side in the two

Chrome windows. He then maximizes one of the Chrome

windows. After a while, he switches from the Chrome window

to an Eclipse IDE window. He opens two different methods in

Eclipse and read the code. Next he switches from the Eclipse

window back to the Chrome window. Assume this sequence

of human-computer interaction takes 120 seconds. A screen-

capture tool can record 600 screenshots at the sample rate 5

screenshots per second.

Given this stream of 600 screenshots, scvRipper can identify

a sequence of five distinct consecutive screenshots as shown in

Fig. 4. It can then identify that the screenshots at time periods

t2 − t3 and t5 − t6 are the same. The screenshots at time

periods t1−t2 and t2−t3 are similar but still different enough

to be considered as two distinct-content screenshots. As such,

scvRipper only needs to further analyze four distinct-content

screenshots out of 600 raw screenshots.

C. Detecting Application Windows

The core algorithm of scvRipper takes as input a distinct-

content screenshot and the definition of application windows

to be recognized in the screenshot. It recognizes application

windows in the screenshot in four steps: 1) detect horizontal

and vertical lines, 2) detect individual visual cues, 3) group de-

tected visual cues, and 4) detect window boundaries. scvRipper
can accurately recognize stacked or side-by-side windows.

1) Detecting Horizontal and Vertical Lines: Fig. 5 illus-

trates the process of detecting horizontal and vertical lines.

Fig. 5(a) is the screenshot of the Eclipse window at time period

t3−t4 in Fig. 4. scvRipper assumes that an application window

(or subwiondow) has explicit window boundaries and occupies

a rectangular region in the screenshot. Thus, scvRipper first

uses the canny edge detector [34] to extract the edge map of a

screenshot. An edge map is a binary image where each pixel is

marked as either an edge pixel or a non-edge pixel. Fig. 5(b)

shows the canny edge map of the part of the screenshot in

Fig. 5(a).

Then scvRipper performs two morphological operations

(erosion and dilation) on the canny edge map. Erosion with a

kernel (a small 2D array, also referred to filter or mask) [35]

shrinks foreground objects by stripping away a small layer

of pixels from the inner and outer boundaries of foreground

objects. It increases the holes enclosed by a single object

and the gaps between different objects, and eliminates small

details. Dilation has the opposite effect of erosion. It adds

a small layer of pixels to the inner and outer boundaries of

foreground objects. It decreases the holes enclosed by a single

object and the gaps between different objects, and fills in small

intrusions into boundaries.

For horizontal lines, erosion followed by dilation with the

kernel [1]1×K (i.e., a horizontal line of K pixels) on the edge

map remove the horizontal lines whose length is less than K.

For vertical lines, erosion followed by dilation with the kernel

is [1]K×1 (i.e., a vertical line of K pixels) on the edge map

remove the vertical lines whose length is less than K. These
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Fig. 5. An Example of Detecting Horizontal and Vertical Lines

erosion and dilation operations generates a line map of the

screenshot (see Figure 5(c)).

The horizontal (or vertical) lines in the line map can be very

close to each other. Such close-by horizontal (or vertical) lines

introduce noises and increase complexity to detect the window

boundaries. Given a line map of the screenshot, scvRipper
uses density-based clustering algorithm (DBSCAN [36]) to

cluster the close-by horizontal (or vertical) lines based on their

geometric distance and overlap. For each cluster of horizontal

(or vertical) lines, scvRipper generates a representative line by

choosing the longest line in the cluster and extending this line

to the smallest start pixel position and the largest end pixel

position of all the lines in the cluster.

2) Detecting Individual Visual Cues: scvRipper uses the

samples of visual cues provided in the definition of an ap-

plication window as image templates. It detects the distinct

visual cues of an application in the screenshot using key point

based template matching [37, 38]. Key point based template

matching is an efficient and scale invariant template matching

method. A key point in an image is a point where the local

image features can differentiate one key point from another.

scvRipper uses the Features from Accelerated Segment Test

(FAST) algorithm [39] to detect the key points of an image.

It extracts the Speeded Up Robust Features (SURF) [38] of

the detected key points. scvRipper detects the occurrences of

a template image in a given screenshot by comparing the

similarities between the key points of the template image and

the key points of the screenshot [40]. Fig. 6(a) visualizes the

key points image of the part of the screenshot in Fig. 5(b). The

left corner of Fig. 6(b) visualizes the key points image of the

visual cue of ConsoleView of Eclipse window. scvRipper
detects the occurrence of this visual cue in the screenshot as

indicated by the lines in Fig. 6(b)

The visual cues of an application are usually small icons.

Some small icons may not always have enough key points,

for example, the Java file icon of CodeEditor of Eclipse

window. In such cases, scvRipper detects the visual cues in

(a) Key Points of Part of Screenshot in Fig.5(b)

(b) Key Point Matching

Fig. 6. An Example of Detecting Individual Visual Cues

a screenshot using template matching with alpha mask. The

alpha mask of an image is a binary image used to reduces the

effect of transparent pixels on the template matching. Given a

visual cue image, its alpha mask, and the screenshot, scvRipper
computes the normalized cross-correlation between the visual

cue image and the subimages of the screenshot with the same

size as the visual cue image [41]. The higher the normalized

cross-correlation value, the more similar between the visual

cue image and the subimages. scvRipper considers it as a

match if the normalized cross-correlation value between the

visual cue image and the subimage is greater than a user-

specified threshold (usually a high threshold like 0.99).

3) Grouping Detected Visual Cues: A screenshot may or

may not contain the application windows of interest. To

determine if the screenshot contains the window(s) of a given

application, scvRipper counts the number of the detected

visual cues that belong to the application according to the

definition of the application window. Multiple instances of

the same type of VisualCues are counted once. If the number

of the detected visual cues that belong to the application is

more than tapp% (a user-specified threshold) of the number

of VisualCues defined in the definition of application window,

scvRipper considers that the screenshot contains the window(s)

of the given application.

If the screenshot contains the application window(s) of in-

terest, scvRipper uses normalized min-max cut algorithm [42]

to group the detected visual cues into different application
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windows, as the screenshot may contain two or more windows

of the same application. Normalized min-max cut algorithm

is an image segmentation technique that groups pixels into

segments based on an affinity matrix of pairwise pixel affinities

such as pixel color similarity and geometric distance. In our

application of normalized min-max cut algorithm we define the

affinity of the two detected visual cues as the possibility of the

two visual cues belonging to the same application window.

If the two visual cues belong to two different applications

(e.g., Eclipse versus Chrome) according to the definition of

application windows, scvRipper sets their affinity at 0. If the

two visual cues belong to the same application, scvRipper
computes the affinity of the two visual cues based on the

uniqueness of the visual cues, their relative positions, and their

geometric distance.

If the two visual cues are the same type of VisualCue of an

application and the isunique of this type of VisualCue is true,

scvRipper sets their affinity at 0. That is, it is impossible that

these two visual cues belong to the same application window

because the application window can have only one instance

of this type of VisualCue. Fig. 7 shows the screenshot of the

two side-by-side Chrome windows at time period t1 − t2 in

Fig. 4. In this example, the affinity between the two detected

“Go Back” visual cues (V1 and V3) is 0 because a Chrome

window can have only one “Go Back” button. The same for

the “Tool” visual cues(V2 and V4).

8+

8,

82

85

Fig. 7. An Example of Affinity Calculation

If the two visual cues are different types of VisualCues of

an application, scvRipper compares the relative position of the

two visual cues against the position constraints defined in the

definition of the application window. If the relative position of

the two visual cues is inconsistent with the position constraints,

scvRipper set their affinity at 0. For example, the “Go Back”

button is supposed to be at the left of the “Tool” button in a

Chrome window. Thus, it is impossible that the detected “Go

Back” button V3 and the “Tool” button V2 belong to the same

Chrome window, because V3 is at the right of V2.

Given the two visual cues whose affinity is not yet set at

0 based on the uniqueness and relative positions of the visual

cues, scvRipper computes their affinity as e−(d2
ij/δ

2) where dij
is the distance between the center of the two visual cues Vi and

Vj and δ is a term proportional to the image size. Intuitively,
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Fig. 9. The Statistics of Task Video Length (TVL)

the more distance between the two visual cues, the less likely

the two visual cues belong to the same application window. In

Fig. 7 the visual cues V1 and V3 (or V2 and V4) more likely

belong to the same Chrome window than V1 and V4.

4) Detecting Window Boundaries: Given a group of detect-

ed visual cues belonging to an application window, scvRipper
first calculates the smallest rectangle enclosing the group of

detected visual cues. It then expands this smallest rectangle

to find the bounding horizontal and vertical lines that form

the bounding box of the group of detected visual cues. This

bounding box is considered as the boundary of the application

window. scvRipper records software usage at a specific time

t in the screen-captured video in terms of the application

window(s) present in the screenshot at time t. Once the

boundary of an application window is determined, scvRipper
further determines the boundary of the GUI components to

be scraped within the application window boundary using the

same method, based on the group of detected visual cues

belonging to the to-be-scraped GUI components.

Fig. 8 shows the detected boundaries of the Eclipse window

(at time period t3 − t4 in Fig. 4) and the Chrome window (at

time periods t2 − t3 and t5 − t6 in Fig. 4). It also shows the

detected boundaries of the to-be-scraped GUIComponents in

the two windows. The detected boundaries are highlighted in

the same color as that of the corresponding type of GUICom-

ponent in Fig. 1.

D. Scraping Content Data from Application Windows

Based on the detected boundary of the to-be-scraped

GUIComponents, scvRipper crops the portion of the screen-

shot and uses Optical-Character-Recognition (OCR) tech-

niques (e.g., ABBYY FineReader) to convert image content

into textual data. Fig. 8 presents an example of the image

scraping results of the Eclipse window and the Chrome

window. The OCRed textual data records what contents the

developer works on at a specific time in the screen-captured

video. For example, the scraped code snippet and the exception

message show that the developer is editing the Activator class

and he encounters the exception IllegalArgumentException.

The scraped URL and search query show that the developer

uses the Google search engine (domain name “google.com”

in the URL) and his search query is “plugin openEditor”.

V. EVALUATION

We now report our evaluation of the usefulness, effective-

ness and runtime performance of our scvRipper tool.

A. Data Set

Our evaluation was conducted on the screen-captured videos

that we collected in our previous study of the developers’
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Fig. 8. An Example of Boundary Detection and Image Scraping Results

online search behavior during software development [4]. This

previous study included two software development tasks: 1)

develop a new P2P chat software, and 2) fix bugs and extends

an existing Eclipse editor plugin. 11 graduate students were

recruited in the first task, and 13 different graduate students

were recruited in the second task from the School of Computer

Science, Fudan University.

The participants were instructed to use a screen-capture

software to record their working process. They used their own

computers that had different window resolutions and color

schema. As the task videos of 4 participants were corrupted,

we used the 29 hours task videos of the 20 participants (8

from the first task and 12 from the second task) to evaluate

our video scraping tool. Fig. 9 shows the box-plot of the Task

Video Length (TVL in minutes) of these participants.

Based on the software tools that the participants used in

our previous study, we defined application windows for the

scvRipper tool to recognize Eclipse IDE window and web

browser window (Google Chrome, Mozilla Firefox, Internet

Explorer). Fig. 2 shows partially the definitions of the Eclipse

IDE and Google Chrome window defined in this study. The

definition instructs the scvRipper tool to scrap: 1) code editor

and console view content in Eclipse IDE window, and 2)

address bar, search box and web page content in web browser

window (see Fig. 8 for an example).

B. Usefulness

Based on the time-series interaction data that the scvRipper
tool extracted from the task videos, we performed two quanti-

tative analysis of the participants’ online search behavior dur-

ing the two software development tasks. First, we computed a

probabilistic model of the participants’ search frequencies and

intervals. Second, we studied the dynamics of the participants’

working context over time.

Fig. 10. The Distribution of Interval Time of Two Consecutive Queries

1) Search Frequencies and Intervals: The time-series inter-

action data identifies the search queries that the participants

used during the tasks. We considered the first appearance of

a search query in the time-series interaction data as the time

when the participants searched the internet with this query.

We collected the interval time of the two consecutive searches

with different queries (denoted by τ ) of the 20 developers

in the two tasks. We used probability density function p (τ)
to describe the relative likelihood of interval time of two

consecutive searches between a given interval. We obtained

probability density function of our data samples of interval

time of two consecutive searches by kernel smoothing density

estimation [43], as shown in black dot line in Fig. 10.

According to theory of human dynamics [44], the proba-

bility density function p (τ) of human activity interval time

obeys a power-law distribution as p (τ) = kλe−λτ , where λ is

exponent parameter and k is a constant coefficient. We fitted

our data samples of interval time of two consecutive searches

in terms of this equation using Least Squares Fitting [45].

The fitting result is shown in red line in Fig. 10. This red
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line is p (τ) = 1
1.41 ×0.45e−0.45τ . We employed coefficient of

determination R2 [46] to determine how well our experimental

data fit the statistical model. The R2 was 0.97 which indicates

that our data samples can be well explained by the statistical

model represented by the red line.

Given the probability density function p (τ), the prob-

ability of variable τ ranging from τ1 to τ2 is equal to

P (τ1 < τ ≤ τ2) =
∫ τ2
τ1

p (τ)dτ [47]. Based on the statistical

model p (τ) = 1
1.41 × 0.45e−0.45τ , the probability that the

developers in the two tasks searched with a different query

within 1 minute is 0.48, within 3 minutes is 0.68, and within

10 minutes is 0.86.
2) The Dynamics of Working Context: The time-series

interaction data identifies what software was used at different

time periods. If the software used in the two consecutive time

periods is Eclipse IDE and web browser respectively, we count

one IDE ⇀↽ Browser switching. If the software used in the two

consecutive time periods is Eclipse (or web browser), we count

one Within-IDE (or Within-Browser) switching.

Fig. 11 shows the number of IDE ⇀↽ Browser switchings,

Within-Browser switchings, and Within-IDE switchings that

the developers performed in every 10 minutes in the two tasks.

The box plots label data with 5 attributes. The bottom and top

of the box are the first (25%) and third (75%) quartiles (Q1

and Q3) of the switchings that the developers performed in

a 10-minute time slot. The band inside the box is the second

quartile (Q2, i.e., the median). The gray boxes indicate the

interquartile range (IQR = Q3 − Q1). The lowest end of

the whiskers represents minimal observation, and the highest

end of whiskers represents maximal observation. The blue line

shows the mean values of the number of switchings over time.

In the first task the developers started with a small number

of IDE ⇀↽ Browser switchings and a large number of Within-

Browser switchings and Within-IDE switchings in the first

10 minutes. This indicates that the developers were trying to

understand the problem they need to solve. Next, the devel-

opers’ Within-Browser and Within-IDE switchings switchings

remained relative stable or dropped in the 11-30 minutes,

while the IDE ⇀↽ Browser switchings increased in the 11-30

minutes. This indicates that the developers found good online

examples and started integrating online examples in the IDE.

Then, the developers’ Within-Browser and IDE ⇀↽ Browser

switchings dropped for the rest of the first task, while the

developers’ Within-IDE switchings remained active. That is,

the developers focused on developing the software within the

IDE without much need for further online search.

In the second task the developers also started with a small

number of IDE ⇀↽ Browser switchings and a large number of

Within-Browser switchings and Within-IDE switchings in the

first 10 minutes. Next, there was a surge in the Within-Browser

switchings in the 11-20 minutes followed by a surge in the IDE
⇀↽ Browser switchings in 20-30 minutes. Similar to the first

task, the developers found some useful online resources and

started integrating them into the IDE in the first 30 minutes.

However, the Within-Browser and IDE ⇀↽ Browser switchings

were much more intense in the second task than in the first

task. Furthermore, the Within-Browser and IDE ⇀↽ Browser

switchings did not drop after the 30 minutes in the second task.

Unlike the first task in which the developers’ search activity

occurred mainly in the beginning of the task, the developer int

the second task had to frequently search and integrate online

resources for the emerging problems throughout the task.

C. Runtime Performance

We ran our scvRipper tool on a Windows 7 computer with

4GB RAM and Intel(R) Core(TM)2 Duo CPU. The 29 hours

task videos were recorded at sample rate 5 screenshots per

second. As such, the 29 hours task videos consists of in total

over 520K screenshots. Our scvRipper tool took 43 hours to

identify about 11K distinct-content screenshots from the 29

hours videos at the threshold tdiff = 0.7. One distinct-content

screenshot on average represents about 10 seconds video. The

scvRipper tool took about 122 hours to extract time-series

interaction data from the 11K distinct-content screenshots, i.e.,

on average 38.41 ± 16.94 seconds to analyze one distinct-

content screenshot. The OCR of the scraped image content

took about 60 hours .

The current implementation of the scvRipper’s core algo-

rithm processes one distinct-content screenshot at a time (i.e.,

sequential processing). The most time-consuming step of the

core algorithm is the second step (i.e., detect individual visual

cues). Our definition of the Eclipse IDE and Chrome window

consists of about 30 and 20 visual cues respectively. The

current implementation detects visual cues in a screenshot one

at a time. This step consumes about 97% of the processing

time of distinct-content screenshots. Since the processing of

individual screenshots and the detection of individual vi-

sual cues are independent, the runtime performance of the

scvRipper tool could be significantly improved by parallel

computing [48] and hardware-implementation of template-

matching algorithm [49]. Parallel computing and hardware

acceleration 2 could also reduce the time of detecting distinct-

content screenshots and the OCR of scraped screen images.

D. Effectiveness

We randomly sampled 500 distinct-content screenshots from

different developers’ task videos at different time periods.

We qualitatively examined the screenshots that these sam-

pled distinct-content screenshots represent. We found that the

scvRipper’s image differencing technique (at tdiff = 0.7 in

this study) can tolerate the reasonable differences between the

screenshots caused by scrolling, mouse movement, and pop-up

menus. Ignoring these screenshots should not cause significant

information loss for data analysis.

We qualitatively examined the results of detected application

windows in these sampled distinct-content screenshots. Our

scvRipper tool sometimes may miss certain visual cues. As

long as some visual cues were detected (over 80% of defined

VisualCues in this study), scvRipper usually can still recognize

the application window. However, missing some visual cues

may result in the less accurate detection of window boundary.

2http://docs.opencv.org/modules/gpu/doc/introduction.html
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Fig. 11. Statistics of Application and Content Switchings in Every 10 Minutes

For example, the detected window boundary may miss the

title bar due to the failure of detecting the corresponding title

bar visual cue. Our scvRipper tool can accurately recognize

side-by-side or stacked windows. But it cannot accurately

detect several (≥ 3) overlapping windows, each of which

is only partially visible. However, screenshots with several

overlapping windows are rare in our dataset.

We evaluated the accuracy of the OCR results using the

extracted query keywords. scvRipper identified 236 distinct-

content screenshots that contain a search query. These queries

contain 253 English words and 809 Chinese words in total. The

OCR accuracy of the English words is about 88.5% (224/253),

while the OCR accuracy of the Chinese words is about 74.9%

(606/809). The screenshots had low DPI (Dots Per Inch, only

72-96 DPI in participants’ computer) which is lower than the

300 DPI that the OCR tool generally requires. The OCR tool

(ABBYY FineReader) we used scaled the low DIP screenshots

to 300 DPI and produced acceptable OCR results.

VI. RELATED WORK

Computer vision techniques have been used to identify user

interface elements from screen-captured images or videos.

Prefab [50] models widgets layout and appearance of an

user interface toolkit as a library of prototypes. A prototype

consists of a set of parts (e.g., a patch of pixels) and a

set of constraints regarding those parts. Prefab identify the

occurrence of widgets from a given prototype library in an

image of an user interface by first assigning image pixels

in parts from the prototype library and then filtering widget

occurrences according to the part constraints.

Waken [51] uses image differencing technique to identify

the occurrence of cursors, icons, menus, and tooltips that an

application contains in screen-captured videos. The identified

GUI elements can be associated with videos as metadata. This

metadata allows the users to directly explore and interact with

the video, as if it were a live application, for example, hove

over icons in the video to display their associated tooltips.

Sikuli [52] uses template matching techniques [41] to find

GUI patterns on the screen. It supports visual search of a given

image in the screenshot. It also supports a visual scripting API

to automate GUI interactions, for example automating GUI

testing [53] or enhancing interactive help systems.

These computer-vision based techniques inspired the design

and implementation of our video scraping technique, including

the metamodel of application window, the detection of distinct-

content screenshots, and the detection of application window.

These existing techniques have focused on visual search, GUI

automation, and implementing new interaction techniques. In

contrast, our work focuses on reverse engineering time-series

interaction data from screen-captured videos. Unlike the video

data that only human can interpret, the reverse-engineered

time-series interaction data can be automatically analyzed to

discover behavioral patterns.

Instrumentation techniques [54, 55] can directly log a per-

son’s interaction with software tools and application content.

They usually requires the support of sophisticated reflection

APIs (e.g., Accessability API or UI Automation API) provided

by applications, operating systems and GUI toolkits. Further-

more, a person can use several software tools (e.g., Eclipse

IDE, different web browsers) in his work. Instrumenting all

these software tools require significant efforts.

Some work proposes to combine low-level operating system

APIs and computer vision techniques to track human computer

interaction. Hurst et al. [15] leverages image differencing

and template matching techniques to improve the accuracy

of target identification that the users click. Chang et al. [16]
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proposed a hybrid framework for detecting text blobs in user

interface by combining pixel-based analysis and accessibility

metadata of the user interface. In contrast, our video scrap-

ping technique analyzes screen-captured videos without any

accessibility information.

VII. CONCLUSIONS AND FUTURE WORK

This paper presented a computer-vision based video-

scraping technique (called scvRipper) that can automatical-

ly reverse-engineer time-series interaction data from screen-

captured videos. This video-scraping technique is generic and

easy to deploy. It can collect software usage and application

content data across several applications according to the user’s

definition. Our scvRipper tool can address the increasing need

for automatic observational data collection methods in the

studies of human aspects of software engineering.

Our case study demonstrated the effectiveness and accu-

racy of the tool’s reverse-engineered interaction data. It also

demonstrated the usefulness of the extracted time-series inter-

action data in modeling ana analyzing the developers’ online

search behavior during software development. Our study also

identified the bottleneck of the tool’s runtime performance and

suggested potential solutions.

We will improve the scvRipper tool’s runtime performance

using parallel computing and hardware acceleration. We are

also interested in combining operating system level instrumen-

tation (e.g., mouse and keystroke) with the core algorithm of

scvRipper to collect more accurate time-series interaction data.
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